986 resultados para ion channel kinetics
Resumo:
The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function.
Resumo:
Many patients develop tumor antigen-specific T cell responses detectable in peripheral blood mononuclear cells (PBMCs) following cancer vaccine. However, measurable tumor regression is observed in a limited number of patients receiving cancer vaccines. There is a need to re-evaluate systemically the immune responses induced by cancer vaccines. Here, we established animal models targeting two human cancer/testis antigens, NY-ESO-1 and MAGE-A4. Cytotoxic T lymphocyte (CTL) epitopes of these antigens were investigated by immunizing BALB/c mice with plasmids encoding the entire sequences of NY-ESO-1 or MAGE-A4. CD8(+) T cells specific for NY-ESO-1 or MAGE-A4 were able to be detected by ELISPOT assays using antigen presenting cells pulsed with overlapping peptides covering the whole protein, indicating the high immunogenicity of these antigens in mice. Truncation of these peptides revealed that NY-ESO-1-specific CD8(+) T cells recognized D(d)-restricted 8mer peptides, NY-ESO-181-88. MAGE-A4-specific CD8(+) T cells recognized D(d)-restricted 9mer peptides, MAGE-A4265-273. MHC/peptide tetramers allowed us to analyze the kinetics and distribution of the antigen-specific immune responses, and we found that stronger antigen-specific CD8(+) T cell responses were required for more effective anti-tumor activity. Taken together, these animal models are valuable for evaluation of immune responses and optimization of the efficacy of cancer vaccines.
Resumo:
The Computational Biophysics Group at the Universitat Pompeu Fabra (GRIB-UPF) hosts two unique computational resources dedicated to the execution of large scale molecular dynamics (MD) simulations: (a) the ACMD molecular-dynamics software, used on standard personal computers with graphical processing units (GPUs); and (b) the GPUGRID. net computing network, supported by users distributed worldwide that volunteer GPUs for biomedical research. We leveraged these resources and developed studies, protocols and open-source software to elucidate energetics and pathways of a number of biomolecular systems, with a special focus on flexible proteins with many degrees of freedom. First, we characterized ion permeation through the bactericidal model protein Gramicidin A conducting one of the largest studies to date with the steered MD biasing methodology. Next, we addressed an open problem in structural biology, the determination of drug-protein association kinetics; we reconstructed the binding free energy, association, and dissaciociation rates of a drug like model system through a spatial decomposition and a Makov-chain analysis. The work was published in the Proceedings of the National Academy of Sciences and become one of the few landmark papers elucidating a ligand-binding pathway. Furthermore, we investigated the unstructured Kinase Inducible Domain (KID), a 28-peptide central to signalling and transcriptional response; the kinetics of this challenging system was modelled with a Markovian approach in collaboration with Frank Noe’s group at the Freie University of Berlin. The impact of the funding includes three peer-reviewed publication on high-impact journals; three more papers under review; four MD analysis components, released as open-source software; MD protocols; didactic material, and code for the hosting group.
Resumo:
AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C. The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant I(Na) was accelerated in a voltage-dependent manner and the steady-state inactivation curve was shifted by 11.6 mV towards negative potentials. No change was observed regarding activation characteristics. Altogether, these biophysical alterations decreased the availability of I(Na). In the simulations, the I(to) density necessary to precipitate repolarization differed minimally between the two genotypes. In contrast, the mutation greatly affected conduction across a structural heterogeneity and precipitated conduction block. CONCLUSION: Our data confirm that mutations of the C-terminal domain of Na(v)1.5 alter the inactivation of the channel and support the notion that conduction alterations may play a significant role in the pathogenesis of BrS.
Resumo:
Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.
Resumo:
Kv3.1 and Kv3.2 K+ channel proteins form similar voltage-gated K+ channels with unusual properties, including fast activation at voltages positive to −10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3.2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1–Kv3.2 current type can have functions other than facilitating high-frequency firing.
Resumo:
We report the case of a woman with syncope and persistently prolonged QTc interval. Screening of congenital long QT syndrome (LQTS) genes revealed that she was a heterozygous carrier of a novel KCNH2 mutation, c.G238C. Electrophysiological and biochemical characterizations unveiled the pathogenicity of this new mutation, displaying a 2-fold reduction in protein expression and current density due to a maturation/trafficking-deficient mechanism. The patient's phenotype can be fully explained by this observation. This study illustrates the importance of performing genetic analyses and mutation characterization when there is a suspicion of congenital LQTS. Identifying mutations in the PAS domain or other domains of the hERG1 channel and understanding their effect may provide more focused and mutation-specific risk assessment in this population.
Resumo:
AIMS: Experimental models have reported conflicting results regarding the role of dispersion of repolarization in promoting atrial fibrillation (AF). Repolarization alternans, a beat-to-beat alternation in action potential duration, enhances dispersion of repolarization when propagation velocity is involved. METHODS AND RESULTS: In this work, original electrophysiological parameters were analysed to study AF susceptibility in a chronic sheep model of pacing-induced AF. Two pacemakers were implanted, each with a single right atrial lead. Right atrial depolarization and repolarization waves were documented at 2-week intervals. A significant and gradual decrease in the propagation velocity at all pacing rates and in the right atrial effective refractory period (ERP) was observed during the weeks of burst pacing before sustained AF developed when compared with baseline conditions. Right atrial repolarization alternans was observed, but because of the development of 2/1 atrioventricular block with far-field ventricular interference, its threshold could not be precisely measured. Non-sustained AF was not observed at baseline, but appeared during the electrical remodelling in association with a decrease in both ERP and propagation velocity. CONCLUSION: We report here on the feasibility of measuring ERP, atrial repolarization alternans, and propagation velocity kinetics and their potential in predicting susceptibility to AF in a free-behaving model of pacing-induced AF using the standard pacemaker technology.
Resumo:
Exact closed-form expressions are obtained for the outage probability of maximal ratio combining in η-μ fadingchannels with antenna correlation and co-channel interference. The scenario considered in this work assumes the joint presence of background white Gaussian noise and independent Rayleigh-faded interferers with arbitrary powers. Outage probability results are obtained through an appropriate generalization of the moment-generating function of theη-μ fading distribution, for which new closed-form expressions are provided.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
We study the minimum mean square error (MMSE) and the multiuser efficiency η of large dynamic multiple access communication systems in which optimal multiuser detection is performed at the receiver as the number and the identities of active users is allowed to change at each transmission time. The system dynamics are ruled by a Markov model describing the evolution of the channel occupancy and a large-system analysis is performed when the number of observations grow large. Starting on the equivalent scalar channel and the fixed-point equation tying multiuser efficiency and MMSE, we extend it to the case of a dynamic channel, and derive lower and upper bounds for the MMSE (and, thus, for η as well) holding true in the limit of large signal–to–noise ratios and increasingly large observation time T.
Resumo:
For single-user MIMO communication with uncoded and coded QAM signals, we propose bit and power loading schemes that rely only on channel distribution information at the transmitter. To that end, we develop the relationship between the average bit error probability at the output of a ZF linear receiver and the bit rates and powers allocated at the transmitter. This relationship, and the fact that a ZF receiver decouples the MIMO parallel channels, allow leveraging bit loading algorithms already existing in the literature. We solve dual bit rate maximization and power minimization problems and present performance resultsthat illustrate the gains of the proposed scheme with respect toa non-optimized transmission.
Resumo:
Échelle(s) : [ca 1:365 000], échelle de 4 lieues de poste de France [= 4,7 cm]
Resumo:
Summary. Hepatitis C viral (HCV) kinetics after initiation of interferon-based therapy provide valuable insights for understanding virus pathogenesis, evaluating treatment antiviral effectiveness and predicting treatment outcome. Adverse effects of liver fibrosis and steatosis on sustained virological response have been frequently reported, yet their impacts on the early viral kinetics remain unclear. In this study, associations between histology status and early viral kinetics were assessed in 149 HCV genotype 1-infected patients treated with pegylated interferon alfa-2a and ribavirin (DITTO trial). In multivariate analyses adjusted for critical factors such as IL28B genotype and baseline viral load, presence of significant fibrosis (Ishak stage > 2) was found to independently reduce the odds of achieving an initial reduction (calculated from day 0 to day 4) in HCV RNA of ≥2 logIU/mL (adjusted OR 0.03, P = 0.004) but was not associated with the second-phase slope of viral decline (calculated from day 8 to day 29). On the contrary, presence of liver steatosis was an independent risk factor for not having a rapid second-phase slope, that is, ≥0.3 logIU/mL/week (adjusted OR 0.22, P = 0.012) but was not associated with the first-phase decline. Viral kinetic modelling theory suggests that significant fibrosis primarily impairs the treatment antiviral effectiveness in blocking viral production by infected cells, whereas the presence of steatosis is associated with a lower net loss of infected cells. Further studies will be necessary to identify the biological mechanisms underlain by these findings.
Resumo:
OBJECTIVE: The aim of this study was to determine whether V˙O(2) kinetics and specifically, the time constant of transitions from rest to heavy (τ(p)H) and severe (τ(p)S) exercise intensities, are related to middle distance swimming performance. DESIGN: Fourteen highly trained male swimmers (mean ± SD: 20.5 ± 3.0 yr; 75.4 ± 12.4 kg; 1.80 ± 0.07 m) performed an discontinuous incremental test, as well as square wave transitions for heavy and severe swimming intensities, to determine V˙O(2) kinetics parameters using two exponential functions. METHODS: All the tests involved front-crawl swimming with breath-by-breath analysis using the Aquatrainer swimming snorkel. Endurance performance was recorded as the time taken to complete a 400 m freestyle swim within an official competition (T400), one month from the date of the other tests. RESULTS: T400 (Mean ± SD) (251.4 ± 12.4 s) was significantly correlated with τ(p)H (15.8 ± 4.8s; r=0.62; p=0.02) and τ(p)S (15.8 ± 4.7s; r=0.61; p=0.02). The best single predictor of 400 m freestyle time, out of the variables that were assessed, was the velocity at V˙O(2max)vV˙O(2max), which accounted for 80% of the variation in performance between swimmers. However, τ(p)H and V˙O(2max) were also found to influence the prediction of T400 when they were included in a regression model that involved respiratory parameters only. CONCLUSIONS: Faster kinetics during the primary phase of the V˙O(2) response is associated with better performance during middle-distance swimming. However, vV˙O(2max) appears to be a better predictor of T400.