901 resultados para innate immune system
Resumo:
Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.
Resumo:
Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.
Resumo:
Antimicrobial peptides (AMPs) are important components of the host innate immune response against microbial invasion. They are usually characterized by their small-size, heat-stability and broad range of antimicrobial activity. This review covers research advances on marine mollusc AMPs, specifically those isolated from mussels, scallops, oysters, venerid clams and abalone, which mainly include MGD, mytilin, myticin, mytimycin, big defensin, and RPD-1. Their structural characteristics, antibacterial activity, and expression pattern as well as peptide distribution and their release following microbial challenge are also discussed. In addition, the prospect of the application of AMPs as food additives or their use in immunostimulation to prevent diseases of aquatic animals, as well as their potential hazards, are also discussed.
Resumo:
Penaeidin from Chinese shrimp (Fenneropenaeus chinensis) has proved to be one of the most important antimicrobial peptides in the bodies of animals. The relative quantitative real-time PCR method is developed to study through time, the mRNA expression profile of penaeidin in the muscle and haemocyte tissue of Chinese shrimp infected with vibrio (Vibrio anguillarum) and WSSV (white spot syndrome virus). Research results showed that the same pathogens infection experiments produced similar gene expression profile in different tissues while different expression profiles appeared in the same tissues infected by different exterior pathogens. In vibrio infection experiments, a "U" Re expression profile resulted. Expression levels of penaeidin increased and surpassed the non-stimulated level, indicating that penaeidin from Chinese shrimp has noticeable antimicrobial activities. In WSSV infection experiments, the expression profile appeared as an inverse "U" with the expression of penaeidin gradually decreasing to below baseline level after 24 h. The expression of antimicrobial peptides gene in mRNA level in response to virus infection in shrimp showed that international mechanisms of virus to haemocytes and microbial to haemocytes are completely different. Decline of penaeidins expression levels may be due to haemocytes being destroyed by WSSV or that the virus can inhibit the expression of penaeidins by yet undiscovered modes. The expression profiles of penaeidin in response to exterior pathogen and the difference of expression profiles between vibrio and WSSV infection provided some clues to further understanding the complex innate immune mechanism in shrimp.
Resumo:
Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and plays a crucial role in the innate immune responses as a pattern recognition receptor (PRR). The cDNA of a short type PGRP was cloned from scallop Chlamys farreri (named CfPGRP-SI) by homology cloning with degenerate primers, and confirmed by virtual Northern blots. The full length of CfPGRP-SI cDNA was 1073 bp in length, including a 5 ' untranslated region (UTR) of 59 bp, a 3 ' UTR of 255 bp, and an open reading frame (ORF) of 759 bp encoding a polypeptide of 252 amino acids with an estimated molecular mass of 27.88 kDa and a predicted isoelectric point of 8.69. BLAST analysis revealed that CfPGRP-S1 shared high identities with other known PGRPs. A conserved PGRP domain and three zinc-binding sites were present at its C-terminus. The temporal expression of QPGRP-S1 gene in healthy, Vibrio anguillarum-challenged and Micrococcus lysodeikticus-challenged scallops was measured by RT-PCR analysis. The expression of CfPGRP-S1 was upregulated initially in the first 12 h or 24 h either by M. lysodeikticus or V. anguillarum challenge and reached the maximum level at 24 h or 36 h, then dropped progressively, and recovered to the original level as the stimulation decreased at 72 h. There was no significant difference between V. anguillarum and M. lysodeikticus challenge. The results indicated that the CfPGRP-S1 was a constitutive and inducible acute-phase protein which was involved in the immune response against bacterial infection. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Toll-like receptors (TLRs) are an evolutionarily ancient family of pattern recognition receptors (PRRs), playing a crucial role in innate immune responses. Here we present a Toll homolog from Chinese shrimp Fenneropenaeus chinensis, designated FcToll. The full-length cDNA of FcToll is 4115 bp including a poly A-tail of 16 bp, encoding a putative protein of 931 amino acids. The predicted protein consists of an extracellular domain with a potential signal peptide, 16 leucine-rich repeats (LRR), two LRR-C-terminal (LRR-CT) motifs, and two LRR-N-terminal (LRR-NT) motifs, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic Toll/Interteukin-IR (TIR) domain of 139 residues. Genomic structure of FcToll gene contains five exons and four introns. Phylogenetic analysis revealed that it belongs to insect-type invertebrate Toll family. Transcripts of FcToll gene were constitutively expressed in various tissues, with predominant level in lymphoid organ. Real-time PCR assays demonstrated that expression patterns of FcToll were distinctly modulated after bacterial or viral stimulation, with significant enhancement after 5 h post-Vibrio anguillorum challenge but markedly reduced levels immediately after white spot syndrome virus (WSSV) exposure. These results suggest that FcToll might be involved in innate host defense, especially against the pathogen V. anguillarum. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Thioester-containing proteins are a family of proteins characterized by the unique intrachain beta-cysteinyl-gamma-glutamyl thioester, which play important roles in innate immune responses. The cDNA of Zhikong scallop Chlamys farreri thioester-containing protein (designated as CfTEP) was cloned by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfTEP was of 4616 bp, consisting of a 5 '-terminal untranslated region (UTR) of 30 bp and a 3 ' UTR of 140 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The CfTEP cDNA encoded a polypeptide of 1481 amino acids with the theoretical isoelectric point of 5.98 and the predicted molecular weight of 161.4 kDa. The deduced amino acid sequence of CfTEP contained the canonical thioester motif GCGEQ, nine potential N-glycosylation sites and a C-terminal distinctive cysteine signature. It also contained a presumed catalytic histidine and proteolytic cleavage sites that were similar to C3 molecules. The high similarity of CfTEP with the thioester-containing proteins in other organisms, such as the TEPs from insects, the complement component C3, C4, C5 and the protease inhibitor alpha(2)-macroglobulin indicated that CfTEP should be a member of TEP family. The phylogenetic analysis revealed that CfTEP was closely related to TEPs from mollusc, nematodes and insects, and they formed a separate branch apart from the branches of complements factors and alpha(2)-macroglobulins. The spatial expression of CfTEP transcripts in healthy and bacterial challenged scallops was examined by semi-quantitative RT-PCR. The CfTEP transcripts were mainly detected in the tissues of hepatopancreas and gonad, and remarkably up-regulated by Microbial challenge, which suggested that CfTEP was a constitutive and inducible acute-phase protein involved in immune defense. These results provided new insights into the role of CfTEP in scallop immune responses, as well as the evolutionary origin of this important, widespread and functionally diversified family of proteins. (c) 2007 Published by Elsevier Ltd.
Resumo:
Manganese superoxide dismutase (MnSOD) plays an important role in crustacean immune defense reaction by eliminating oxidative stress. Knowledge on MnSOD at molecular level allows us to understand its regulatory mechanism in crustacean immune system. A novel mitochondrial manganese superoxide dismutase (mMnSOD) was cloned from hepatopancreas of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1185 bp with a 660 bp open reading frame, encoding 220 amino acids. The deduced amino acid sequence contains a putative signal peptide of 20 amino acids. Sequence comparison showed that the mMnSOD of F. chinensis shares 88% and 82% identity with that of giant freshwater prawn Macrobrachium rosenbergii and blue crab Callinectes sapidus, respectively. mMnSOD transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill by Northern blotting. RT-PCR analysis indicated that mMnSOD showed different expression profiles in shrimp hemocytes and hepatopancreas after artificial infection with while spot syndrome virus (WSSV). In addition, a fusion protein containing mMnSOD was produced in vitro. LC-ESI-MS analysis showed that two peptide fragments (-GDVNTVISLAPALK- and -NVRPDYVNAIWK-) of the recombinant protein were identical to the corresponding sequence of M. rosenbergii mMnSOD, and the enzyme activity of the refolded recombinant protein was also measured. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Antimicrobial peptides are important components of the host innate immune responses by exerting broad-spectrum microbicidal activity against pathogenic microbes. The first mollusk big defensin (designated AiBD) cDNA was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The scallop AiBD consisted of 531 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 122 amino acids. The high similarity of AiBD deduced amino acid sequence with big defensin from Tachypleus tridentatus and Branchiostoma belcheri tsingtaunese indicated that AiBD should be a member of big defensin family. The expression of AiBD in various tissues was measured by using Northern blotting analysis. mRNA transcripts of AiBD could be detected in haemocytes of unchallenged scallops. The temporal expression of AiBD in haemolymph after Vibrio anguilarum challenge was recorded by quantitative real time PCR. The relative expression level of AiBD in haemolymph was up-regulated evenly in the first 8 h, followed by a drastic increase, and increased 131.1-fold at 32 h post-injection. These results indicated that AiBD could be induced by bacterial challenge, and it should participate in the immune responses of A. irradians. Biological activity assay revealed that recombinant AiBD could inhibit the growth of both Gram-positive and Gram-negative bacteria, and also showed strong fungicidal activity towards the expression host. Recombinant expression of AiBD made it possible to further characterize its functions involved in immune responses, and also provided a potential therapeutic agent for disease control in aquaculture. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in certain contexts are known to be immunostimulatory in vertebrate systems. CpG ODNs with immune effects have been identified for many fish species but, to our knowledge, not for turbot. In this study, a turbot-effective CpG ODN, ODN 205, was identified and a plasmid, pCN5, was constructed which contains the CpG motif of ODN 205. When administered into turbot via intraperitoneal (i.p.) injection, both ODN 205 and pCN5 could (i) inhibit bacterial dissemination in blood in dose and time dependent manners, and (ii) protect against lethal bacterial challenge. Immunological analyses showed that in vitro treatment with ODN 205 stimulated peripheral blood leukocyte proliferation, while i.p. injection with ODN 205 enhanced the respiratory burst activity, chemiluminescence response, and acid phosphatase activity of turbot head kidney macrophages. pCN5 treatment-induced immune responses similar to those induced by ODN 205 treatment except that pCN5 could also enhance serum bactericidal activity in a calcium-independent manner. To examine whether ODN 205 and pCN5 had any effect on specific immunity, ODN 205 and pCN5 were co-administered into turbot with a Vibrio harveyi subunit vaccine, DegQ. The results showed that pCN5, but not ODN 205, significantly increased the immunoprotective efficacy of DegQ and enhanced the production of specific serum antibodies in the vaccinated fish. Further analysis indicated that vaccination with DegQ in the presence of pCN5 upregulated the expression of the genes encoding MHC class II alpha, IgM, Mx, and IL-8 receptor. Taken together, these results demonstrate that ODN 205 and pCN5 can stimulate the immune system of turbot and induce protection against bacterial challenge. In addition, pCN5 also possesses adjuvant property and can potentiate vaccine-induced specific immunity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively But its expression level did not change significantly during peptidoglycan (PGN) stimulation The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3) The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way The agglutinating activity could be inhibited by D-mannose. LPS and glucan, but not by D-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate Immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs (C) 2010 Elsevier Ltd All rights reserved
Resumo:
A large number of polymorphic simple sequence repeats (SSRs) or microsatellites are needed to develop a genetic map for shrimp. However, developing an SSR map is very time-consuming, expensive, and most SSRs are not specifically linked to gene loci of immediate interest. We report here on our strategy to develop polymorphic markers using expressed sequence tags (ESTs) by designing primers flanking single or multiple SSRs with three or more repeats. A subtracted cDNA library was prepared using RNA from specific pathogen-free (SPF) Litopenaeus vannamei juveniles (similar to 1 g) collected before (0) and after (48 h) inoculation with the China isolate of white spot syndrome virus (WSSV). A total of 224 clones were sequenced, 194 of which were useful for homology comparisons against annotated genes in NCBI nonredundant (nr) and protein databases, providing 179 sequences encoded by nuclear DNA, 4 mitochondrial DNA, and 11 were similar to portions of WSSV genome. The nuclear sequences clustered in 43 groups, 11 of which were homologous to various ESTs of unknown function, 4 had no homology to any sequence, and 28 showed similarities to known genes of invertebrates and vertebrates, representatives of cellular metabolic processes such as calcium ion balance, cytoskeleton mRNAs, and protein synthesis. A few sequences were homologous to immune system-related (allergens) genes and two were similar to motifs of the sex-lethal gene of Drosophila. A large number of EST sequences were similar to domains of the EF-hand superfamily (Ca2+ binding motif and FRQ protein domain of myosin light chains). Single or multiple SSRs with three or more repeats were found in approximately 61 % of the 179 nuclear sequences. Primer sets were designed from 28 sequences representing 19 known or putative genes and tested for polymorphism (EST-SSR marker) in a small test panel containing 16 individuals. Ten (53%) of the 19 putative or unknown function genes were polymorphic, 4 monomorphic, and 3 either failed to satisfactorily amplify genomic DNA or the allele amplification conditions need to be further optimized. Five polymorphic ESTs were genotyped with the entire reference mapping family, two of them (actin, accession #CX535973 and shrimp allergen arginine kinase, accession #CX535999) did not amplify with all offspring of the IRMF panel suggesting presence of null alleles, and three of them amplified in most of the IRM F offspring and were used for linkage analysis. EF-hand motif of myosin light chain (accession #CX535935) was placed in ShrimpMap's linkage group 7, whereas ribosomal protein S5 (accession #CX535957) and troponin I (accession #CX535976) remained unassigned. Results indicate that (a) a large number of ESTs isolated from this cDNA library are similar to cytoskeleton mRNAs and may reflect a normal pathway of the cellular response after im infection with WSSV, and (b) primers flanking single or multiple SSRs with three or more repeats from shrimp ESTs could be an efficient approach to develop polymorphic markers useful for linkage mapping. Work is underway to map additional SSR-containing ESTs from this and other cDNA libraries as a plausible strategy to increase marker density in ShrimpMap.
Resumo:
对虾病害在世界范围内的广泛传播,给水产养殖和沿海农村经济造成了重大损失。深入开展对虾免疫机制研究并在此基础上寻找对虾疾病防治的有效方法已成为当务之急。研究表明,当对虾等甲壳动物受到外界病原刺激时,其体内的吞噬细胞在吞噬活动中会激活磷酸己糖支路的代谢,引起呼吸爆发,产生多种活性氧分子。另外,受到病原侵染的对虾还会产生其他多种免疫反应,这些免疫反应将消耗大量的能量(ATP),产能的呼吸链会加速运转,由此也会引发大量活性氧的产生。这些活性氧分子可以杀灭入侵的病原微生物,但同时由于活性氧分子反应的非特异性,它们也会对宿主的细胞、组织和器官造成严重伤害,进而导致对虾生理机能的损伤和免疫系统的破坏。所以,消除对虾体内因过度免疫反应产生的过量氧自由基将能够增强其抵御病原侵染的能力,提高免疫力。本论文从中国明对虾体内克隆了线粒体型超氧化物歧化酶(mMnSOD)、胞质型超氧化物歧化酶(cMnSOD)、过氧化氢酶(Catalase)和过氧化物还原酶(Peroxiredoxin)等四种与免疫系统相关的抗氧化酶基因,分析了它们的分子结构特征,组织分布及应答不同病原刺激的表达变化模式,并对其中的mMnSOD基因和Peroxiredoxin基因进行了体外重组表达、分离纯化和酶活性分析。 采用RACE技术从中国明对虾血细胞中克隆了两个超氧化物歧化酶(SOD)基因,通过序列比对分析发现,其中一个为mMnSOD基因,另一个为cMnSOD基因。mMnSOD基因的cDNA全长为1185个碱基,其中开放阅读框为660个碱基,编码220个氨基酸,其中推测的信号肽为20个氨基酸。多序列比对结果显示中国明对虾mMnSOD基因的推导氨基酸序列与罗氏沼虾、蓝蟹的推导氨基酸序列同源性分别为88%和82%。Northern blot结果表明,该基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。半定量RT-PCR结果显示,对虾感染病毒3 h时,该基因在血细胞和肝胰脏中的转录水平显著升高。此外,通过构建原核表达载体,本研究对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活分析。cMnSOD基因的cDNA全长为1284个碱基,其中开放阅读框为861个碱基,编码287个氨基酸。多序列比对结果显示中国明对虾cMnSOD基因的推导氨基酸序列与斑节对虾和凡纳滨对虾的同源性高达98%和94%。组织半定量结果显示,cMnSOD基因在对虾被检测的各个组织中均有表达。 另外,半定量RT-PCR结果表明,对虾感染病毒23h时,该基因在肝胰脏中的转录上升到正常水平的3.5倍;而感染后59 h时,该基因在血细胞中的转录上升到正常水平的2.5倍。 利用根据其他生物过氧化氢酶保守氨基酸序列设计的简并引物,结合RACE技术,从中国明对虾肝胰脏中克隆到了过氧化氢酶基因的部分片段,片段长1725个碱基。多序列比对结果发现目前所得中国明对虾Catalase基因部分片段的推导氨基酸序列与罗氏沼虾和皱纹盘鲍Catalase氨基酸序列的同源性分别达到95%和73%。通过实时荧光定量PCR技术对中国明对虾Catalase基因在各个组织中的分布情况及病毒感染后该基因在血细胞和肝胰脏中的转录变化进行了研究。结果发现,该基因在肝胰脏、鳃、肠和血细胞中表达水平较高,在卵巢、淋巴器官和肌肉中的表达水平相对较弱;感染病毒23 h和37 h时,对虾血细胞和肝胰脏中该基因mRNA的表达量分别出现显著性上升。 依据中国明对虾头胸部cDNA文库提供的部分片段信息,结合SMART-RACE技术,从中国明对虾肝胰脏中克隆到了过氧化物还原酶基因(Peroxiredoxin), 该基因的cDNA全长为942个碱基,其中开放阅读框为594个碱基,编码198个氨基酸。中国明对虾Peroxiredoxin基因的推断氨基酸序列与伊蚊、文昌鱼和果蝇等Peroxiredoxin基因的推断氨基酸序列同源性分别为77%、76%和73%。其蛋白理论分子量为22041.17 Da,pI为5.17。Northern blot结果表明,Peroxiredoxin基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。实时荧光定量PCR结果显示,弧菌感染后,该基因在对虾血细胞和肝胰脏中的转录水平都有明显变化并且表达模式不同。另外,对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活性分析。酶活性分析表明,复性后的重组蛋白能在DTT存在的条件下还原H2O2。