889 resultados para information theoretic measures
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.
Resumo:
What informs members of the church community as they learn? Do the ways people engage with information differ according to the circumstances in which they learn? Informed learning, or the ways in which people use information in the learning experience and the degree to which they are aware of that, has become a focus of contemporary information literacy research. This essay explores the nature of informed learning in the context of the church as a learning community. It is anticipated that insights resulting from this exploration may help church organisations, church leaders and lay people to consider how information can be used to grow faith, develop relationships, manage the church and respond to religious knowledge, which support the pursuit of spiritual wellness and the cultivation of lifelong learning. Information professionals within the church community and the broader information profession are encouraged to foster their awareness of the impact that engagement with information has in the learning experience and in the prioritising of lifelong learning in community contexts.
Resumo:
Purpose: The purpose of this paper is to explain variations in discretionary information shared between buyers and key suppliers. The paper also aims to examine how the extent of information shared affects buyers’ performance in terms of resource usage, output, and flexibility. ----- ----- Design/methodology/approach: The data for the paper comprise 221 Finnish and Swedish non-service companies obtained through a mail survey. The hypothesized relationships were tested using partial least squares modelling with reflective and formative constructs.----- ----- Findings: The results of the study suggest that (environmental and demand) uncertainty and interdependency can to some degree explain the extent of information shared between a buyer and key supplier. Furthermore, information sharing improves buyers’ performance with respect to resource usage, output, and flexibility.----- ----- Research limitations/implications: A limitation to the paper relates to the data, which only included buyers.Abetter approach would have been to collect data from both, buyers and key suppliers. Practical implications – Companies face a wide range of supply chain solutions that enable and encourage collaboration across organizations. This paper suggests a more selective and balanced approach toward adopting the solutions offered as the benefits are contingent on a number of factors such as uncertainty. Also, the risks of information sharing are far too high for a one size fits all approach.----- ----- Originality/value: The paper illustrates the applicability of transaction cost theory to the contemporary era of e-commerce. With this finding, transaction cost economics can provide a valuable lens with which to view and interpret interorganizational information sharing, a topic that has received much attention in the recent years.
Resumo:
We examine the impact of individual-specific information processing strategies (IPSs) on the inclusion/exclusion of attributes on the parameter estimates and behavioural outputs of models of discrete choice. Current practice assumes that individuals employ a homogenous IPS with regards to how they process attributes of stated choice (SC) experiments. We show how information collected exogenous of the SC experiment on whether respondents either ignored or considered each attribute may be used in the estimation process, and how such information provides outputs that are IPS segment specific. We contend that accounting the inclusion/exclusion of attributes will result in behaviourally richer population parameter estimates.
Resumo:
The economic environment of today can be characterized as highly dynamic and competitive if not being in a constant flux. Globalization and the Information Technology (IT) revolution are perhaps the main contributing factors to this observation. While companies have to some extent adapted to the current business environment, new pressures such as the recent increase in environmental awareness and its likely effects on regulations are underway. Hence, in the light of market and competitive pressures, companies must constantly evaluate and if necessary update their strategies to sustain and increase the value they create for shareholders (Hunt and Morgan, 1995; Christopher and Towill, 2002). One way to create greater value is to become more efficient in producing and delivering goods and services to customers, which can lead to a strategy known as cost leadership (Porter, 1980). Even though Porter (1996) notes that in the long run cost leadership may not be a sufficient strategy for competitive advantage, operational efficiency is certainly necessary and should therefore be on the agenda of every company. ----- ----- ----- Better workflow management, technology, and resource utilization can lead to greater internal operational efficiency, which explains why, for example, many companies have recently adopted Enterprise Resource Planning (ERP) Systems: integrated softwares that streamline business processes. However, as today more and more companies are approaching internal operational excellence, the focus for finding inefficiencies and cost saving opportunities is moving beyond the boundaries of the firm. Today many firms in the supply chain are engaging in collaborative relationships with customers, suppliers, and third parties (services) in an attempt to cut down on costs related to for example, inventory, production, as well as to facilitate synergies. Thus, recent years have witnessed fluidity and blurring regarding organizational boundaries (Coad and Cullen, 2006). ----- ----- ----- The Information Technology (IT) revolution of the late 1990’s has played an important role in bringing organizations closer together. In their efforts to become more efficient, companies first integrated their information systems to speed up transactions such as ordering and billing. Later collaboration on a multidimensional scale including logistics, production, and Research & Development became evident as companies expected substantial benefits from collaboration. However, one could also argue that the recent popularity of the concepts falling under Supply Chain Management (SCM) such as Vendor Managed Inventory, Collaborative Planning, Replenishment, and Forecasting owe to the marketing efforts of software vendors and consultants who provide these solutions. Nevertheless, reports from professional organizations as well as academia indicate that the trend towards interorganizational collaboration is gaining wider ground. For example, the ARC Advisory Group, a research organization on supply chain solutions, estimated that the market for SCM, which includes various kinds of collaboration tools and related services, is going to grow at an annual rate of 7.4% during the years 2004-2008, reaching to $7.4 billion in 2008 (Engineeringtalk 2004).
Resumo:
The focus of the present research was to investigate how Local Governments in Queensland were progressing with the adoption of delineated DM policies and supporting guidelines. The study consulted Local Government representatives and hence, the results reflect their views on these issues. Is adoption occurring? To what degree? Are policies and guidelines being effectively implemented so that the objective of a safer, more resilient community is being achieved? If not, what are the current barriers to achieving this, and can recommendations be made to overcome these barriers? These questions defined the basis on which the present study was designed and the survey tools developed. While it was recognised that LGAQ and Emergency Management Queensland (EMQ) may have differing views on some reported issues, it was beyond the scope of the present study to canvass those views. The study resolved to document and analyse these questions under the broad themes of: • Building community capacity (notably via community awareness). • Council operationalisation of DM. • Regional partnerships (in mitigation/adaptation). Data was collected via a survey tool comprising two components: • An online questionnaire survey distributed via the LGAQ Disaster Management Alliance (hereafter referred to as the “Alliance”) to DM sections of all Queensland Local Government Councils; and • a series of focus groups with selected Queensland Councils
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams for information filtering systems. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on the RCV1 data collection, and substantial experiments show that the proposed approach achieves encouraging performance and the performance is also consistent for adaptive filtering as well.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences, but many experiments do not support this hypothesis. The innovative technique presented in paper makes a breakthrough for this difficulty. This technique discovers both positive and negative patterns in text documents as higher level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the higher level features. Substantial experiments using this technique on Reuters Corpus Volume 1 and TREC topics show that the proposed approach significantly outperforms both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and pattern based methods on precision, recall and F measures.
Resumo:
Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.
Resumo:
This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern- based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experiments have been conducted to compare the proposed two-stage filtering (T-SM) model with other possible "term-based + pattern-based" or "term-based + term-based" IF models. The results based on the RCV1 corpus show that the T-SM model significantly outperforms other types of "two-stage" IF models.
Resumo:
Health information sharing has become a vital part of modern healthcare delivery. E-health technologies provide efficient and effective ways of sharing medical information, but give rise to issues that neither the medical professional nor the consumers have control over. Information security and patient privacy are key impediments that hinder sharing information as sensitive as health information. Health information interoperability is another issue which hinders the adoption of available e health technologies. In this paper we propose a solution for these problems in terms of information accountability, the HL7 interoperability standard and social networks for manipulating personal health records.
Resumo:
Online social networking has become one of the most popular Internet applications in the modern era. They have given the Internet users, access to information that other Internet based applications are unable to. Although many of the popular online social networking web sites are focused towards entertainment purposes, sharing information can benefit the healthcare industry in terms of both efficiency and effectiveness. But the capability to share personal information; the factor which has made online social networks so popular, is itself a major obstacle when considering information security and privacy aspects. Healthcare can benefit from online social networking if they are implemented such that sensitive patient information can be safeguarded from ill exposure. But in an industry such as healthcare where the availability of information is crucial for better decision making, information must be made available to the appropriate parties when they require it. Hence the traditional mechanisms for information security and privacy protection may not be suitable for healthcare. In this paper we propose a solution to privacy enhancement in online healthcare social networks through the use of an information accountability mechanism.
Resumo:
While the importance of literature studies in the IS discipline is well recognized, little attention has been paid to the underlying structure and method of conducting effective literature reviews. Despite the fact that literature is often used to refine the research context and direct the pathways for successful research outcomes, there is very little evidence of the use of resource management tools to support the literature review process. In this paper we want to contribute to advancing the way in which literature studies in Information Systems are conducted, by proposing a systematic, pre-defined and tool-supported method to extract, analyse and report literature. This paper presents how to best identify relevant IS papers to review within a feasible and justifiable scope, how to extract relevant content from identified papers, how to synthesise and analyse the findings of a literature review and what are ways to effectively write and present the results of a literature review. The paper is specifically targeted towards novice IS researchers, who would seek to conduct a systematic detailed literature review in a focused domain. Specific contributions of our method are extensive tool support, the identification of appropriate papers including primary and secondary paper sets and a pre-codification scheme. We use a literature study on shared services as an illustrative example to present the proposed approach.
Resumo:
Privacy has become one of the main impediments for e-health in its advancement to providing better services to its consumers. Even though many security protocols are being developed to protect information from being compromised, privacy is still a major issue in healthcare where privacy protection is very important. When consumers are confident that their sensitive information is safe from being compromised, their trust in these services will be higher and would lead to better adoption of these systems. In this paper we propose a solution to the problem of patient privacy in e-health through an information accountability framework could enhance consumer trust in e-health services and would lead to the success of e-health services.
Resumo:
There has been an increasing interest by governments worldwide in the potential benefits of open access to public sector information (PSI). However, an important question remains: can a government incur tortious liability for incorrect information released online under an open content licence? This paper argues that the release of PSI online for free under an open content licence, specifically a Creative Commons licence, is within the bounds of an acceptable level of risk to government, especially where users are informed of the limitations of the data and appropriate information management policies and principles are in place to ensure accountability for data quality and accuracy.