914 resultados para infant mortality and life expectancy
Resumo:
Swiss death certification data over the period 1951-1984 for total cancer mortality and 30 major cancer sites in the population aged 25 to 74 years were analysed using a log-linear Poisson model with arbitrary constraints on the parameters to isolate the effects of birth cohort, calendar period of death and age. The overall pattern of total cancer mortality in males was stable for period values and showed some moderate decreases in cohort values restricted to the generations born after 1930. Cancer mortality trends were more favourable in females, with steady, though moderate, declines in both cohort and period values. According to the estimates from the model, the worst affected generation for male lung cancer was that born around 1910, and a flattening of trends or some moderate decline was observed for more recent cohorts, although this decline was considerably more limited than in other European countries. There were decreases in cohort and period values for stomach, intestine and oesophageal cancer in both sexes and (cervix) uteri in females. Increases were observed in both cohort and period trends for pancreas and liver in males and for several other neoplasms, including prostate, brain, leukaemias and lymphomas, restricted, however, for the latter sites, to the earlier cohorts and hence partly attributable to improved diagnosis and certification in the elderly. Although age values for lung cancer in females were around 10-times lower than in males, upward trends in female lung cancer cohort values were observed in subsequent cohorts and for period values from the late 1960's onwards. Therefore, future trends in female lung cancer mortality should continue to be monitored. The application of these age/period/cohort models thus provides a summary guide for the reading and interpretation of cancer mortality trends, although it cannot replace careful inspection of single age-specific rates.
Resumo:
PURPOSE: To assess how different diagnostic decision aids perform in terms of sensitivity, specificity, and harm. METHODS: Four diagnostic decision aids were compared, as applied to a simulated patient population: a findings-based algorithm following a linear or branched pathway, a serial threshold-based strategy, and a parallel threshold-based strategy. Headache in immune-compromised HIV patients in a developing country was used as an example. Diagnoses included cryptococcal meningitis, cerebral toxoplasmosis, tuberculous meningitis, bacterial meningitis, and malaria. Data were derived from literature and expert opinion. Diagnostic strategies' validity was assessed in terms of sensitivity, specificity, and harm related to mortality and morbidity. Sensitivity analyses and Monte Carlo simulation were performed. RESULTS: The parallel threshold-based approach led to a sensitivity of 92% and a specificity of 65%. Sensitivities of the serial threshold-based approach and the branched and linear algorithms were 47%, 47%, and 74%, respectively, and the specificities were 85%, 95%, and 96%. The parallel threshold-based approach resulted in the least harm, with the serial threshold-based approach, the branched algorithm, and the linear algorithm being associated with 1.56-, 1.44-, and 1.17-times higher harm, respectively. Findings were corroborated by sensitivity and Monte Carlo analyses. CONCLUSION: A threshold-based diagnostic approach is designed to find the optimal trade-off that minimizes expected harm, enhancing sensitivity and lowering specificity when appropriate, as in the given example of a symptom pointing to several life-threatening diseases. Findings-based algorithms, in contrast, solely consider clinical observations. A parallel workup, as opposed to a serial workup, additionally allows for all potential diseases to be reviewed, further reducing false negatives. The parallel threshold-based approach might, however, not be as good in other disease settings.
Resumo:
BACKGROUND & AIMS: Age is frequently discussed as negative host factor to achieve a sustained virological response (SVR) to antiviral therapy of chronic hepatitis C. However, elderly patients often show advanced fibrosis/cirrhosis as known negative predictive factor. The aim of this study was to assess age as an independent predictive factor during antiviral therapy. METHODS: Overall, 516 hepatitis C patients were treated with pegylated interferon-α and ribavirin, thereof 66 patients ≥60 years. We analysed the impact of host factors (age, gender, fibrosis, haemoglobin, previous hepatitis C treatment) and viral factors (genotype, viral load) on SVR per therapy course by performing a generalized estimating equations (GEE) regression modelling, a matched pair analysis and a classification tree analysis. RESULTS: Overall, SVR per therapy course was 42.9 and 26.1%, respectively, in young and elderly patients with hepatitis C virus (HCV) genotypes 1/4/6. The corresponding figures for HCV genotypes 2/3 were 74.4 and 84%. In the GEE model, age had no significant influence on achieving SVR. In matched pair analysis, SVR was not different in young and elderly patients (54.2 and 55.9% respectively; P = 0.795 in binominal test). In classification tree analysis, age was not a relevant splitting variable. CONCLUSIONS: Age is not a significant predictive factor for achieving SVR, when relevant confounders are taken into account. As life expectancy in Western Europe at age 60 is more than 20 years, it is reasonable to treat chronic hepatitis C in selected elderly patients with relevant fibrosis or cirrhosis but without major concomitant diseases, as SVR improves survival and reduces carcinogenesis.
Resumo:
Comment on: Blouin C, Chopra M, van der Hoeven R.Trade and social determinants of health. Lancet. 2009;373(9662):502-7. PMID: 19167058.
Resumo:
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.
Resumo:
Background: To compare the characteristics and prognostic features of ischemic stroke in patients with diabetes and without diabetes, and to determine the independent predictors of in-hospital mortality in people with diabetes and ischemic stroke.Methods: Diabetes was diagnosed in 393 (21.3%) of 1,840 consecutive patients with cerebral infarction included in a prospective stroke registry over a 12-year period. Demographic characteristics, cardiovascular risk factors, clinical events, stroke subtypes, neuroimaging data, and outcome in ischemic stroke patients with and without diabetes were compared. Predictors of in-hospital mortality in diabetic patients with ischemic stroke were assessed by multivariate analysis. Results: People with diabetes compared to people without diabetes presented more frequently atherothrombotic stroke (41.2% vs 27%) and lacunar infarction (35.1% vs 23.9%) (P < 0.01). The in-hospital mortality in ischemic stroke patients with diabetes was 12.5% and 14.6% in those without (P = NS). Ischemic heart disease, hyperlipidemia, subacute onset, 85 years old or more, atherothrombotic and lacunar infarcts, and thalamic topography were independently associated with ischemic stroke in patients with diabetes, whereas predictors of in-hospital mortality included the patient's age, decreased consciousness, chronic nephropathy, congestive heart failure and atrial fibrillation. Conclusion: Ischemic stroke in people with diabetes showed a different clinical pattern from those without diabetes, with atherothrombotic stroke and lacunar infarcts being more frequent. Clinical factors indicative of the severity of ischemic stroke available at onset have a predominant influence upon in-hospital mortality and may help clinicians to assess prognosis more accurately.
Resumo:
Les parasites jouent un rôle clef dans l'évolution des comportements et des traits d'histoire de vie de leurs hôtes. Le parasitisme s'avère parfois dévastateur à l'échelle de population d'hôtes, et peut également altérer certains traits associés à la valeur sélective d'un individu infecté, tels que son succès reproducteur ou encore son taux de mortalité. La coévolution hôte/parasite, qui représente l'une des forces sélectives les plus puissantes dans l'évolution des organismes, peut également conduire les partenaires de l'association parasitaire à s'adapter localement à des environnements hétérogènes. Cette thèse porte sur l'étude de parasites aviaires, du genre Plasmodium, Haemopro- teus et Leucocytozoon (Haemosporidae), naturellement associés à différentes populations de mésanges charbonnières (Parus major) et d'hirondelles des fenêtres (Delichon ur- bicum). Dans un premier temps, nous avons cherché à déterminer comment se distribuent ces parasites au sein de différentes populations hôtes et si ces communautés de parasites sont structurées. Par la suite, la principale question à laquelle nous voulions répondre était de savoir comment ces parasites, et notamment après coexistence de plusieurs lignées génétiques d'Haemosporidae au sein dun même-individu (i.e. co-infection), affectent la physiologie et le succès de reproducteur des hôtes. Nos résultats suggèrent que la distribution des Haemosporidae est principalement gouvernée par la présence d'insectes vecteurs et que la persistance de l'infection chez les hôtes varie en fonction du genre d'Haemosporidae (Chapitre 1-2). Par ailleurs, nous avons trouvé que des lignées de parasite génétiquement distinctes peuvent avoir des effets contrastés sur leurs hôtes. Par exemple, les hôtes exhibent des différences de parasitémie marquées en fonction des lignées de parasites responsable de l'infection. De plus, le succès reproducteur ainsi que la charge parasitaire des mésanges infectées par Plasmodium ou Haemoproteus n'étaient pas affecté par l'infection simultanée avec Leucocytozoon (Chapitre 2-3). Dans le Chapitre 4, j'ai examiné la capacité immunitaire de mésanges charbonnières infectées par des hémosporidies. Les résultats n'ont pas été concluant, et je suggère fortement une réévaluation de ceux-ci dans de futures études. Les mésanges charbonnières ne semblent pas signaler leur statut infectieux par la coloration de leur plumage (Chapitre 5); toutefois, la coloration noire des plumes reflète l'état de stress oxydatif des mésanges, qui dépend lui-même de l'infection parasitaire. La coloration verte pourrait également indiquer la qualité des soins paxentaux délivrés par les mésanges adultes femelles à leurs petits, comme le suggère la corrélation que nous avons observée entre la masse des jeunes d'une nichée et la coloration de leur mère. Les hirondelles capturées en Algérie souffrent plus de l'infection que celles échantillon¬nées en Europe (Chapitre 6). Les similitudes observées entre les communautés de par¬asites affectant les populations européennes et celles des populations nord-africaines suggèrent que la transmission des parasites a lieu lors de la migration vers le sud. A l'instar de nos observations sur les mésanges dans les chapitres 2 et 3, les hirondelles co-infectées ne montrent pas d'altérations de leur condition physique. Cette thèse démontre qu'il existe, au sein des populations de mésanges charbonnières, des interactions antagonistes entre, d'une part, les parasites et leurs hôtes et d'autre part, entre différent parasites. Le résultat de ces interactions antagonistes varie en fonction des espèces et de la zone géographique considérée. Nous avons démontré que les interactions ne suivent pas toujours la théorie, puisque la coevolution qui, en suivant le concept de la virulence, devrait augmenter la charge parasitaire et diminuer la condition physique des hôtes, ne montre pourtant pas d'impact négatif sur les populations de mésanges. Nous pouvons maintenant concentrer nos efforts à la caractérisation des interactions antagonistes. De plus, grâce aux avancées des méthodes moléculaires, nous pouvons suivre et étudier en détails comment ces interactions se manifestent et quels sont leurs effets sur la condition physique des hôtes. - Parasites are key in shaping various behavioural and life-history traits of their hosts. The influence of parasitism on host populations varies from slight to devastating and might influence such parameters as mortality rates or reproductive success. Host-parasite coevolution is one of the most powerful selective forces in evolution and can lead to local adaptation of parasites and hosts in spatially structured environments. In this thesis, I studied haemosporidian parasites in different populations of great tits (Parus major) and house martins (Delichon urbicum). Firstly, I wanted to determine how parasites are distributed and if parasite communities are structured. The main question I wanted to address hereafter was how parasites, and specifically infection with multiple genera of parasites (i.e. co-infection) influenced host physiology and reproductive success. I found that parasite distribution is environmentally driven and could therefore be closely linked to vector prevalence; and that the stability of parasite infection over time is genus-dependent (Chapter 1 - 2). I further found that different haemosporidian lineages might interact differently with their hosts as parasitaemia was strongly lineage-specific and that the presence of Leucocytozoon parasites showed no correlation to Plasmodium or Haemoproteus parasitaemia, nor to great tit reproductive success (Chapter 2-3). In Chapter 4 I examined immune capacity of haemosporidian-infected great tits. The results proved inconclusive, and I strongly suggest re-evaluation hereof in future work. Great tits do not appear to signal parasite infection through plumage colouration (Chapter 5); however, infection did have a link to oxidative stress resistance which is strongly signalled through the black breast stripe, with darker males being more resistant and darker females less resistant. Females might incur different costs associated with darker stripes. This would allow reversal of signaling function. Green colouration could also serve as a cue for female provisioning quality as indicated by the strong correlation between colouration and chick body mass. Breeding house martins caught in Algeria suffer greater haemosporidian infection than European populations (Chapter 6). Similar parasite communities in European and North-African populations suggest transmission of parasites may occur during southward migration. Similarly to what was observed in great tits in Chapter 2 and 3, no relationship was found between parasite co-infection and Swiss house martin body condition. This thesis demonstrates that host-parasite and inter-parasite antagonistic interac¬tions exist in great tit populations. How these interactions play out is species dependent and varies geographically. I have demonstrated that interactions do not always follow the theory, as co-infection - which under the concept of virulence should increase parasitaemia and decrease body condition - showed no negative impact on great tit populations. We can now concentrate our efforts on characterising these antagonistic interactions, and with the advance in molecular methods, track and investigate how these interactions play out and what the effect on host fitness is.
Resumo:
Background: Post-surgical management of stage I seminoma includes: surveillance with repeated CT-scans and treatment reserved for those who relapse, or adjuvant treatment with either immediate radiation therapy (RT) or carboplatin. The cancer specific survival is close to 100%. Cure without long-term sequelae of treatment is the aim. Our goal is to estimate the risk of radiation-induced secondary cancers (SC) death from for patients undergoing S, adjuvant RT or adjuvant carboplatin (AC).Materials and Methods: We measured organ doses from CT scans (3 phases each one) of a seminoma patient who was part of the active surveillance strategy and from a man undergoing adjuvant RT 20-Gy and a 30-Gy salvage RT treatment to the para-aortic area using helical Intensity Modulated RT (Tomotherapy®) with accurate delineation of organs at risk and a CTV to PTV expansion of 1 cm. Effective doses to organs in mSv were estimated according to the tissue-weighting factors recommendations of the International Commission on Radiological Protection 103 (Ann ICRP 2007). We estimated SC incidence and mortality for a 10,000 people population based on the excess absolute risk model from the Biological Effects of Ionizing Radiation (BEIR) VII (Health Risk of Exposure to Low Levels of Ionizing Radiation, NCR, The National Academies Press Washington, DC, 2006) assuming a seminoma diagnosis at age 30, a total life expectancy of 80 years.Results: The nominal risk for a fatal secondary cancers was calculated 1.5% for 15 abdominal CT scans, 14.8% for adjuvant RT (20 Gy paraaortic field) and 22.2% for salvage RT (30 Gy). The calculation assumed that the risk of relapse on surveillance and adjuvant AC was 15% and 4% respectively and that all patients were salvaged at relapse with RT. n CT abdomen/Pelvis = secondary cancer % RT Dose and % receiving treatment = secondary cancer % Total secondary cancer risk in % Active surveillance 15 = 1.5% 30 Gy in 15% of pts = 3.3% 4.8 Adjuvant carboplatin 7 = 0.7% 30 Gy in 4% of pts = 0.88% 1.58 Adjuvant radiotherapy 7 = 0.7% 20 Gy in 100% of pts = 14.8% 15.5Conclusions: These data suggest that: 1) Adjuvant radiotherapy is harmful and should not anymore be regarded as a standard option for seminoma stage I. 2) AC seems to be an option to reduce radiation induced cancers. Limitations: the study does not consider secondary cancers due to chemotherapy with AC (unknown). The use of BEIR VII for risk modeling with higher doses of RT needs to be validated.
Resumo:
How phenomena like helping, dispersal, or the sex ratio evolve depends critically on demographic and life-history factors. One phenotype that is of particular interest to biologists is genomic imprinting, which results in parent-of-origin-specific gene expression and thus deviates from the predictions of Mendel's rules. The most prominent explanation for the evolution of genomic imprinting, the kinship theory, originally specified that multiple paternity can cause the evolution of imprinting when offspring affect maternal resource provisioning. Most models of the kinship theory do not detail how population subdivision, demography, and life history affect the evolution of imprinting. In this work, we embed the classic kinship theory within an island model of population structure and allow for diverse demographic and life-history features to affect the direction of selection on imprinting. We find that population structure does not change how multiple paternity affects the evolution of imprinting under the classic kinship theory. However, if the degree of multiple paternity is not too large, we find that sex-specific migration and survival and generation overlap are the primary factors determining which allele is silenced. This indicates that imprinting can evolve purely as a result of sex-related asymmetries in the demographic structure or life history of a species.
Resumo:
The authors examine the relation between the perinatal mortality rate (PMR), birth weight in four categories, and hour of birth throughout the week in Switzerland, using data on 672,013 births and 5,764 perinatal deaths recorded between 1979 and 1987. From Monday to Friday, the PMR follows a circadian rhythm with a regular increase from early morning to evening, with a peak for babies born between 7 and 8 p.m. This pattern of variation has two main components: The circadian rhythms for the proportion of births in the four weight categories and the PMR circadian rhythm for babies weighing more than 2.5 kg. According to a cosinor model, which describes about 40% of the total variation in the PMR, the most important determinants are changes in the proportions of births: Low birth weight increases toward the afternoon and night. Mechanisms underlying the weight-specific timing of birth are discussed, including time selection of birth according to obstetric risks, the direct effect of neonatal and obstetric care, and chronobiologic behavior.
Resumo:
Hypertension is an important determinant of cardiovascular morbidity and mortality and has a substantial heritability, which is likely of polygenic origin. The aim of this study was to assess to what extent multiple common genetic variants contribute to blood pressure regulation in both adults and children and to assess overlap in variants between different age groups, using genome-wide profiling. Single nucleotide polymorphism sets were defined based on a meta-analysis of genome-wide association studies on systolic blood pressure and diastolic blood pressure performed by the Cohort for Heart and Aging Research in Genome Epidemiology (n=29 136), using different P value thresholds for selecting single nucleotide polymorphisms. Subsequently, genetic risk scores for systolic blood pressure and diastolic blood pressure were calculated in an independent adult population (n=2072) and a child population (n=1034). The explained variance of the genetic risk scores was evaluated using linear regression models, including sex, age, and body mass index. Genetic risk scores, including also many nongenome-wide significant single nucleotide polymorphisms, explained more of the variance than scores based only on very significant single nucleotide polymorphisms in adults and children. Genetic risk scores significantly explained ≤1.2% (P=9.6*10(-8)) of the variance in adult systolic blood pressure and 0.8% (P=0.004) in children. For diastolic blood pressure, the variance explained was similar in adults and children (1.7% [P=8.9*10(-10)] and 1.4% [P=3.3*10(-5)], respectively). These findings suggest the presence of many genetic loci with small effects on blood pressure regulation both in adults and children, indicating also a (partly) common polygenic regulation of blood pressure throughout different periods of life.
Resumo:
Catheter-related infection remains a leading cause of nosocomial infections, particularly in intensive care units. It includes colonization of the device, skin exit-site infection and device- or catheter-related bloodstream infection. The latter represents the most frequent life-threatening associated complication of central venous catheter use and is associated with significant patient morbidity, mortality and extra hospital costs. The incidence of catheter-related bloodstream infection ranges from 2 to 14 episodes per 1000 catheter-days. On average, microbiologically-documented device-related bloodstream infections complicate from three to five per 100 central venous line uses, but they only represent the visible part of the iceberg and most clinical sepsis are nowadays considered to be catheter-related. We briefly review the pathophysiology of infection, highlighting the importance of the skin insertion site and of intravenous line hub as principal sources of colonization. Principles of therapy are reviewed. Several preventive approaches are also discussed, in particular the possible benefit of recently developed impregnated catheters. Finally, the potential positive impact of a multimodal global preventive strategy based on strict application of hygienic rules is presented.
Resumo:
BACKGROUND: The advent of highly active antiretroviral therapy (HAART) in 1996 led to a decrease in the incidence of Kaposi's sarcoma (KS) and non-Hodgkin's lymphoma (NHL), but not of other cancers, among people with HIV or AIDS (PWHA). It also led to marked increases in their life expectancy. METHODS: We conducted a record-linkage study between the Swiss HIV Cohort Study and nine Swiss cantonal cancer registries. In total, 9429 PWHA provided 20,615, 17,690, and 15,410 person-years in the pre-, early-, and late-HAART periods, respectively. Standardised incidence ratios in PWHA vs the general population, as well as age-standardised, and age-specific incidence rates were computed for different periods. RESULTS: Incidence of KS and NHL decreased by several fold between the pre- and early-HAART periods, and additionally declined from the early- to the late-HAART period. Incidence of cancers of the anus, liver, non-melanomatous skin, and Hodgkin's lymphoma increased in the early- compared with the pre-HAART period, but not during the late-HAART period. The incidence of all non-AIDS-defining cancers (NADCs) combined was similar in all periods, and approximately double that in the general population. CONCLUSIONS: Increases in the incidence of selected NADCs after the introduction of HAART were largely accounted for by the ageing of PWHA.
Resumo:
Les pressions écologiques peuvent varier tant en nature qu'en intensité dans le temps et l'espace. C'est pourquoi, un phénotype unique ne peut pas forcément conférer la meilleure valeur sélective. La plasticité phénotypique peut être un moyen de s'accommoder de cette situation, en augmentant globalement la tolérance aux changements environnementaux. Comme pour tout trait de caractère, une variation génétique doit persister pour qu'évoluent les traits plastiques dans une population donnée. Cependant, les pressions extérieures peuvent affecter l'héritabilité, et la direction de ces changements peut dépendre du caractère en question, de l'espèce mais aussi du type de stress. Dans la présente thèse, nous avons cherché à élucider les effets des pressions pathogéniques sur les phénotypes et la génétique quantitative de plusieurs traits plastiques chez les embryons de deux salmonidés, la palée (Coregonus palaea), et la truite de rivière (Salmo trutta). Les salmonidés se prêtent à de telles études du fait de leur extraordinaire variabilité morphologique, comportementale et des traits d'histoire de vie. Par ailleurs, avec le déclin des salmonidés dans le monde, il est important de savoir combien la variabilité génétique persiste dans les normes de réaction afin d'aider à prédire leur capacité à répondre aux changements de leur milieu. Nous avons observé qu'une augmentation de la croissance des communautés microbiennes symbiotiques entraînait une mortalité accrue et une éclosion précoce chez la palée, et dévoilait la variance génétique additive pour ces deux caractères (Chapitres 1-2). Bien qu'aucune variation génétique n'ait été trouvée pour les normes de réaction, nous avons observé une variabilité de la plasticité d'éclosion. Néanmoins, on a trouvé que les temps d'éclosion étaient corrélés entre les environnements, ce qui pourrait limiter l'évolution de la norme de réaction. Le temps d'éclosion des embryons est lié à la taille des géniteurs mâles, ce qui indique des effets pléiotropiques. Dans le Chapitre 3, nous avons montré qu'une interaction triple entre la souche bactérienne {Pseudomonas fluorescens}, l'état de dévelopement de l'hôte ainsi que ses gènes ont une influence sur la mortalité, le temps d'éclosion et la taille des alevins de la palée. Nous avons démontré qu'une variation génétique subsistait généralement dans les normes de réaction des temps d'éclosion, mais rarement pour la taille des alevins, et jamais pour la mortalité. Dans le même temps, nous avons exhibé que des corrélations entre environnements dépendaient des caractères phénotypiques, mais contrairement au Chapitre 2, nous n'avons pas trouvé de preuve de corrélations transgénérationnelles. Le Chapitre 4 complète le chapitre précédent, en se plaçant du point de vue moléculaire, et décrit comment le traitement d'embryons avec P. fluorescens s'est traduit par une régulation négative d'expression du CMH-I indépendemment de la souche bactérienne. Nous avons non seulement trouvé une variation génétique des caractères phénotypiques moyens, mais aussi de la plasticité. Les deux derniers chapitres traitent de l'investigation, chez la truite de rivière, des différences spécifiques entre populations pour des normes de réaction induites par les pathogènes. Dans le Chapitre 5, nous avons illustré que le métissage entre des populations génétiquement distinctes n'affectait en rien la hauteur ou la forme des normes de réaction d'un trait précoce d'histoire de vie suite au traitement pathogénique. De surcroît, en dépit de l'éclosion tardive et de la réduction de la taille des alevins, le traitement n'a pas modifié la variation héritable des traits de caractère. D'autre part, dans le Chapitre 6, nous avons démontré que le traitement d'embryons avec des stimuli contenus dans l'eau de conspécifiques infectés a entraîné des réponses propre à chaque population en terme de temps d'éclosion ; néanmoins, nous avons observé peu de variabilité génétique des normes de réaction pour ce temps d'éclosion au sein des populations. - Ecological stressors can vary in type and intensity over space and time, and as such, a single phenotype may not confer the highest fitness. Phenotypic plasticity can act as a means to accommodate this situation, increasing overall tolerance to environmental change. As with any trait, for plastic traits to evolve in a population, genetic variation must persist. However, environmental stress can alter trait heritability, and the direction of this shift can be trait, species, and stressor-dependent. In this thesis, we sought to understand the effects of pathogen stressors on the phenotypes and genetic architecture of several plastic traits in the embryos of two salmonids, the whitefish (Coregonus palaea), and the brown trout (Salmo trutta). Salmonids lend themselves to such studies because their extraordinary variability in morphological, behavioral, and life-history traits. Also, with declines in salmonids worldwide, knowing how much genetic variability persists in reaction norms may help predict their ability to respond to environmental change. We found that increasing growth of symbiotic microbial communities increased mortality and induced hatching in whitefish, and released additive genetic variance for both traits (Chapters 1-2). While no genetic variation was found for survival reaction norms, we did find variability in hatching plasticity. Nevertheless, hatching time was correlated across environments, which could constrain evolution of the reaction norm. Hatching time in the induced environment was also correlated to sire size, indicating pleiotropic effects. In Chapter 3 we report that a three-way interaction between bacterial strain (Pseudomonas fluorescens), host developmental stage, and host genetics impacted mortality, hatching time, and hatchling size in whitefish. We also showed that genetic variation generally persisted in hatching age reaction norms, but rarely for hatchling length, and never for mortality. At the same time, we demonstrated that cross-environmental correlations were trait-dependent, and unlike Chapter 2, we found no evidence of cross-generational correlations. Chapter 4 expands on the previous chapter, moving to the molecular level, and describes how treatment of embryos with P. fluorescens resulted in strain-independent downregulation of MHC class I. Genetic variation was evident not only in trait means, but also in plasticity. In the last two chapters, we investigated population level differences in pathogen- induced reaction norms in brown trout. In Chapter 5, we found that interbreeding between genetically distinct populations did not affect the elevation or shapes of the reaction norms of early life-history traits after pathogen challenge. Moreover, despite delaying hatching and reducing larval length, treatment produced no discernable shifts in heritable variation in traits. On the other hand, in Chapter 6, we found that treatment of embryos with water-borne cues from infected conspecifics elicited population-specific responses in terms of hatching time; however, we found little evidence of genetic variability in hatching reaction norms within populations. We have made considerable progress in understanding how pathogen stressors affect various early life-history traits in salmonid embryos. We have demonstrated that the effect of a particular stressor on heritable variation in these traits can vary according to the trait and species under consideration, in addition to the developmental stage of the host. Moreover, we found evidence of genetic variability in some, but not all reaction norms in whitefish and brown trout.