929 resultados para immune suppressor
Resumo:
The T-cell-mediated immune response exhibits a crucial function in the control of the intrahepatic proliferation of Echinococcus multilocularis larvae in mice and humans, both being natural intermediate hosts of the parasite. Antigen B (AgB), a metabolized Echinococcus spp. lipoprotein, contributes to the modulation of the T-cell immune response, and distinct sites of the corresponding AgB1, AgB3 and AgB4 genes were shown to be under positive selection pressure. Since several AgB gene variants are present in a single Echinococcus metacestode, we used secondary E. multilocularis infections in BALB/c and in athymic nude mice (devoid of T-cell responses) to analyze the effect of the cellular immune response on the expression and diversity of EmAgB1-EmAgB4 genes. We demonstrated hereby that EmAgB transcripts were less abundant in nude mice during the early phase of infection (at one month post-infection), and that EmAgB2 is simultaneously down-regulated when compared to the other three genes. A negative relationship exists between the level of transcription and diversity of EmAgB genes. Moreover, no excess of non-synonymous substitutions was found among the distinct EmAgB alleles from a single host. Together, these results pointed to the effect of purifying selection, which seemed to eliminate the detrimental AgB variants generated during the development of the metacestode within the peritoneal cavity of its intermediate host.
Resumo:
Neospora caninum is widely recognized as one of the most important infectious organisms causing abortion and stillbirth in cattle. This parasite causes severe economical losses worldwide. Infection is mostly passed vertically from mother to calf during pregnancy. Under certain circumstances, an infection can lead to abortion, but in most cases it results in a chronically infected calf, which itself will represent the next endogenously infectious generation. So far, no reliable therapeutic or metaphylactic tool has been developed. One possibility to control the problem may consist of treating newborn calves that became vertically infected by a persistently infected mother. This may allow parasite-free offspring. The aim of the present study was to address the questions: (1) can serology be used to assess efficiency of treatment in toltrazuril-medicated animals? and (2) is a strategic prevention measure possible by means of producing N. caninum-free calves from positive cows? Calves from Neospora-seropositive cows and heifers were randomly split into two different medication groups: 36 calves were medicated with toltrazuril and 36 calves obtained a placebo. Medication (20 mg toltrazuril per kg bw) was administered three times, every second day, within the 7 days post natum. Three months after medication, there was no difference in antibody reactivity between the two groups. At later time points (4-6 months), however, significant differences were found, as explained by a strong humoral immunity after chemotherapeutical affection of parasites, while the placebo-treated animals only responded weakly to the persistent infection. In summary, we concluded that (1) serology was not an entirely appropriate tool to answer our initial question and (2) toltrazuril has the potential to eliminate N. caninum in newborn calves. As a consequence, we plan to follow up toltrazuril-medicated calves clinically and serologically over a longer period and investigate if they give birth to Neospora-free calves.
Resumo:
The autoimmune disease pemphigus vulgaris (PV) manifests as loss of keratinocyte cohesion triggered by autoantibody binding to desmoglein (Dsg)3, an intercellular adhesion molecule of mucous membranes, epidermis, and epidermal stem cells. Here we describe a so far unknown signaling cascade activated by PV antibodies. It extends from a transient enhanced turn over of cell surface-exposed, nonkeratin-anchored Dsg3 and associated plakoglobin (PG), through to depletion of nuclear PG, and as one of the consequences, abrogation of PG-mediated c-Myc suppression. In PV patients (6/6), this results in pathogenic c-Myc overexpression in all targeted tissues, including the stem cell compartments. In summary, these results show that PV antibodies act via PG to abolish the c-Myc suppression required for both maintenance of epidermal stem cells in their niche and controlled differentiation along the epidermal lineage. Besides a completely novel insight into PV pathogenesis, these data identify PG as a potent modulator of epithelial homeostasis via its role as a key suppressor of c-Myc.
Resumo:
The regulation of cell death is a key element in building up and maintaining both innate and adaptive immunity. A critical role in this process plays the tumor necrosis factor (TNF)/nerve growth factor (NGF) receptor family of death receptors. Recent work suggests that sialic acid binding immunoglobulin (Ig) -like lectins (Siglecs) are also empowered to transmit death signals, at least into myeloid cells. Strikingly, death induction by Siglecs is enhanced when cells are exposed to proinflammatory survival cytokines. Based on these recent insights, we hypothesize that at least some members of the Siglec family regulate immune responses via the activation of caspase-dependent and caspase-independent cell death pathways.
Resumo:
Cellular immune responses are an important correlate of hepatitis C virus (HCV) infection outcome. These responses are governed by the host's human leukocyte antigen (HLA) type, and HLA-restricted viral escape mutants are a critical aspect of this host-virus interaction. We examined the driving forces of HCV evolution by characterizing the in vivo selective pressure(s) exerted on single amino acid residues within nonstructural protein 3 (NS3) by the HLA types present in two host populations. Associations between polymorphisms within NS3 and HLA class I alleles were assessed in 118 individuals from Western Australia and Switzerland with chronic hepatitis C infection, of whom 82 (69%) were coinfected with human immunodeficiency virus. The levels and locations of amino acid polymorphisms exhibited within NS3 were remarkably similar between the two cohorts and revealed regions under functional constraint and selective pressures. We identified specific HCV mutations within and flanking published epitopes with the correct HLA restriction and predicted escaped amino acid. Additional HLA-restricted mutations were identified that mark putative epitopes targeted by cell-mediated immune responses. This analysis of host-virus interaction reveals evidence of HCV adaptation to HLA class I-restricted immune pressure and identifies in vivo targets of cellular immune responses at the population level.
Resumo:
The tumor suppressor gene hypermethylated in cancer 1 (HIC1), located on human chromosome 17p13.3, is frequently silenced in cancer by epigenetic mechanisms. Hypermethylated in cancer 1 belongs to the bric à brac/poxviruses and zinc-finger family of transcription factors and acts by repressing target gene expression. It has been shown that enforced p53 expression leads to increased HIC1 mRNA, and recent data suggest that p53 and Hic1 cooperate in tumorigenesis. In order to elucidate the regulation of HIC1 expression, we have analysed the HIC1 promoter region for p53-dependent induction of gene expression. Using progressively truncated luciferase reporter gene constructs, we have identified a p53-responsive element (PRE) 500 bp upstream of the TATA-box containing promoter P0 of HIC1, which is sequence specifically bound by p53 in vitro as assessed by electrophoretic mobility shift assays. We demonstrate that this HIC1 p53-responsive element (HIC1.PRE) is necessary and sufficient to mediate induction of transcription by p53. This result is supported by the observation that abolishing endogenous wild-type p53 function prevents HIC1 mRNA induction in response to UV-induced DNA damage. Other members of the p53 family, notably TAp73beta and DeltaNp63alpha, can also act through this HIC1.PRE to induce transcription of HIC1, and finally, hypermethylation of the HIC1 promoter attenuates inducibility by p53.
Resumo:
Drug-induced hypersensitivity reactions are instructive examples of immune reactions against low molecular weight compounds. Classically, such reactions have been explained by the hapten concept, according to which the small antigen covalently modifies an endogenous protein; recent studies show strong associations of several HLA molecules with hypersensitivity. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the major histocompatibility complex (MHC)-peptide complex in order to trigger an immune response. Rather, some drugs may bind reversibly to the MHC or possibly to the T-cell receptor (TCR), eliciting immune reactions akin to the pharmacological activation of other receptors. While the exact mechanism is still a matter of debate, noncovalent drug presentation clearly leads to the activation of drug-specific T cells. In some patients with hypersensitivity, such a response may occur within hours of even the first exposure to the drug. Thus, the reaction to the drug may not be the result of a classical, primary response but rather be mediated by existing, preactivated T cells that display cross-reactivity for the drug and have additional (peptide) specificity as well. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the idiosyncratic nature of many drug hypersensitivity reactions.
Resumo:
Blockade of cytokines, particularly of tumour necrosis factor alpha (TNF-alpha), in immuno-inflammatory diseases, has led to the greatest advances in medicine of recent years. We did a thorough review of the literature with a focus on inflammation models in rodents on modified gene expression or bioactivity for IL-1, IL-6, and TNF-alpha, and we summarized the results of randomized controlled clinical trials in human disease. What we have learned herewith is that important information can be achieved by the use of animal models in complex, immune-mediated diseases. However, a clear ranking for putative therapeutic targets appears difficult to obtain from an experimental approach alone. This is primarily due to the fact that none of the disease models has proven to cover more than one crucial pathogenetic aspect of the complex cascade of events leading to characteristic clinical disease signs and symptoms. This supports the notion that the addressed human immune-mediated diseases are polygenic and the summation of genetic, perhaps epigenetic, and environmental factors. Nevertheless, it has become apparent, so far, that TNF-alpha is of crucial importance in the development of antigen-dependent and antigen-independent models of inflammation, and that these results correlate well with clinical success. With some delay, clinical trials in conditions having some relationship with rheumatoid arthritis (RA) indicate new opportunities for blocking IL-1 or IL-6 therapeutically. It appears, therefore, that a translational approach with critical, mutual reflection of simultaneously performed experiments and clinical trials is important for rapid identification of new targets and development of novel treatment options in complex, immune-mediated, inflammatory diseases.
Resumo:
Cyclin-dependent kinases (CDKs) successively phosphorylate the retinoblastoma protein (RB) at the restriction point in G1 phase. Hyperphosphorylation results in functional inactivation of RB, activation of the E2F transcriptional program, and entry of cells into S phase. RB unphosphorylated at serine 608 has growth suppressive activity. Phosphorylation of serines 608/612 inhibits binding of E2F-1 to RB. In Nalm-6 acute lymphoblastic leukemia extracts, serine 608 is phosphorylated by CDK4/6 complexes but not by CDK2. We reasoned that phosphorylation of serines 608/612 by redundant CDKs could accelerate phospho group formation and determined which G1 CDK contributes to serine 612 phosphorylation. Here, we report that CDK4 complexes from Nalm-6 extracts phosphorylated in vitro the CDK2-preferred serine 612, which was inhibited by p16INK4a, and fascaplysin. In contrast, serine 780 and serine 795 were efficiently phosphorylated by CDK4 but not by CDK2. The data suggest that the redundancy in phosphorylation of RB by CDK2 and CDK4 in Nalm-6 extracts is limited. Serine 612 phosphorylation by CDK4 also occurred in extracts of childhood acute lymphoblastic leukemia cells but not in extracts of mobilized CD34+ hemopoietic progenitor cells. This phenomenon could contribute to the commitment of childhood acute lymphocytic leukemia cells to proliferate and explain their refractoriness to differentiation-inducing agents.
Resumo:
Background: A growing body of literature suggests that caregiving burden is associated with impaired immune system functioning, which may contribute to elevated morbidity and mortality risk among dementia caregivers. However, potential mechanisms linking these relationships are not well understood. The purpose of this study was to investigate whether stress-related experience of depressive symptoms and reductions in personal mastery were related to alterations in ss2-adrenergic receptor sensitivity.Methods: Spousal Alzheimer's caregivers (N = 106) completed measures assessing the extent to which they felt overloaded by their caregiving responsibilities, experienced depressive symptoms, and believed their life circumstances were under their control. We hypothesized that caregivers reporting elevated stress would report increased depressive symptoms and reduced mastery, which in turn would be associated with reduced ss2- adrenergic receptor sensitivity on peripheral blood mononuclear cells (PBMC), as assessed by in vitro isoproterenol stimulation.Results: Regression analyses indicated that overload was negatively associated with mastery (beta = -0.36, p = 0.001) and receptor sensitivity (beta = -0.24, p = 0.030), whereas mastery was positively associated with receptor sensitivity (beta = 0.29, p = 0.005). Finally, the relationship between overload and receptor sensitivity diminshed upon simultaneous entry of mastery. Sobel's test confirmed that mastery significantly mediated some of the relationship between overload and receptor sensitivity (z = -2.02, p = 0.044).Conclusions: These results suggest that a reduced sense of mastery may help explain the association between caregiving burden and reduced immune cell ss2-receptor sensitivity.
Immune cell migration across the blood–brain barrier: molecular mechanisms and therapeutic targeting
Resumo:
The endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier protect the CNS from the constantly changing milieu within the bloodstream. The BBB strictly controls immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS, such as viral or bacterial infections, or during inflammatory diseases, such as multiple sclerosis, immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of the available information on immune cell entry into the CNS is derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Consequently, our current knowledge on traffic signals mediating immune cell entry across the BBB during immunosurveillance and disease results mainly from experimental data in the EAE model. Therefore, a large part of this review summarizes these findings. Similarly, the potential benefits and risks associated with therapeutic targeting of immune cell trafficking across the BBB will be discussed in the context of multiple sclerosis, since elucidation of the molecular mechanisms relevant to this disease have largely relied on the use of its in vivo model, EAE.
Resumo:
Natural zeolites are crystalline aluminosilicates with unique adsorption, cation-exchange, and catalytic properties that have multiple uses in industry and agriculture. TMAZ, a natural zeolite clinoptilolite with enhanced physicochemical properties, is the basis of the dietary supplements Megamin and Lycopenomin, which have demonstrated antioxidant activity in humans. The aim of this prospective, open, and controlled parallel-group study was to investigate the effects of supplementation with TMAZ on the cellular immune system in patients undergoing treatment for immunodeficiency disorder. A total of 61 patients were administered daily TMAZ doses of 1.2 g (Lycopenomin) and 3.6 g (Megamin) for 6 to 8 weeks, during which the patients' primary medical therapy was continued unchanged. Blood and lymphocyte counts were performed at baseline and at the end of the study. Blood count parameters were not relevantly affected in either of the two treatment groups. Megamin administration resulted in significantly increased CD4+, CD19+, and HLA-DR+ lymphocyte counts and a significantly decreased CD56+ cell count. Lycopenomin was associated with an increased CD3+ cell count and a decreased CD56+ lymphocyte count. No adverse reactions to the treatments were observed.