904 resultados para images filmiques
Resumo:
Image acquisition systems based on multi-head arrangement of digital camerasare attractive alternatives enabling a larger imaging area when compared to a single framecamera. The calibration of this kind of system can be performed in several steps or byusing simultaneous bundle adjustment with relative orientation stability constraints. Thepaper will address the details of the steps of the proposed approach for system calibration,image rectification, registration and fusion. Experiments with terrestrial and aerial imagesacquired with two Fuji FinePix S3Pro cameras were performed. The experiments focusedon the assessment of the results of self-calibrating bundle adjustment with and withoutrelative orientation constraints and the effects to the registration and fusion when generatingvirtual images. The experiments have shown that the images can be accurately rectified andregistered with the proposed approach, achieving residuals smaller than one pixel. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
This paper presents a novel approach to the computed assessment of a mammographic phantom device. The approach shown here is fully automated and is based on the automatic selection of the region of interest, in the use of the discrete wavelet transform (DWT) and morphological operators to assess the quality of the American College of Radiology (ACR) mammographic phantom images. The algorithms developed here have succesfully scored 30 images obtained with different combinations of voltage applied to the tube and exposure and could notice the differences in the radiographs due to the different level of exposure to radiation. © 2013 Springer-Verlag.
Resumo:
The paper presents and evaluates three methods for automatically estimating the main orientation of Martian dust devil tracks in MOC and HiRISE images. Inferring such information about dust devils from their tracks is important to better understand the near surface wind. The methods considered were based on gradient direction, directional openings and morphological granulometry. The accuracy of the methods was asserted by comparing the results to a set of directions estimated visually and assumed to be the ground truth. The higher accuracy was reached using directional openings. Besides, the directions inferred by this method were compared to those predicted by the GCM and the results agreed. © 2013 COSPAR.
Resumo:
This paper presents a novel segmentation method for cuboidal cell nuclei in images of prostate tissue stained with hematoxylin and eosin. The proposed method allows segmenting normal, hyperplastic and cancerous prostate images in three steps: pre-processing, segmentation of cuboidal cell nuclei and post-processing. The pre-processing step consists of applying contrast stretching to the red (R) channel to highlight the contrast of cuboidal cell nuclei. The aim of the second step is to apply global thresholding based on minimum cross entropy to generate a binary image with candidate regions for cuboidal cell nuclei. In the post-processing step, false positives are removed using the connected component method. The proposed segmentation method was applied to an image bank with 105 samples and measures of sensitivity, specificity and accuracy were compared with those provided by other segmentation approaches available in the specialized literature. The results are promising and demonstrate that the proposed method allows the segmentation of cuboidal cell nuclei with a mean accuracy of 97%. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Intestinal parasitosis constitutes a serious health problem in most tropical countries. The diagnosis of enteroparasites in laboratory routine relies on the examination of stool samples using optical microscopy and the error rates usually range from moderate to high. Approaches based on automatic image analysis have been proposed, but the methods are usually specific for some species, some of them are computationally expensive, and image acquisition and focus are manual. We present a solution to automate the diagnosis of the 15 most common species of enteroparasites in Brazil, using a sensitive parasitological technique, a motorized microscope with digital camera for automatic image acquisition and focus, and fast image analysis methods. The results indicate that our solution is effective and suitable for laboratory routine, in which the exam must be concluded in a few minutes. © 2013 IEEE.
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
Resumo:
In this work we propose a new image inpainting technique that combines texture synthesis, anisotropic diffusion, transport equation and a new sampling mechanism designed to alleviate the computational burden of the inpainting process. Given an image to be inpainted, anisotropic diffusion is initially applied to generate a cartoon image. A block-based inpainting approach is then applied so that to combine the cartoon image and a measure based on transport equation that dictates the priority on which pixels are filled. A sampling region is then defined dynamically so as to hold the propagation of the edges towards image structures while avoiding unnecessary searches during the completion process. Finally, a cartoon-based metric is computed to measure likeness between target and candidate blocks. Experimental results and comparisons against existing techniques attest the good performance and flexibility of our technique when dealing with real and synthetic images. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Artes - IA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Algae bloom is one of the major consequences of the eutrophication of aquatic systems, including algae capable of producing toxic substances. Among these are several species of cyanobacteria, also known as blue-green algae, that have the capacity to adapt themselves to changes in the water column. Thus, the horizontal distribution of cyanobacteria harmful algae blooms (CHABs) is essential, not only to the environment, but also for public health. The use of remote sensing techniques for mapping CHABs has been explored by means of bio-optical modeling of phycocyanin (PC), a unique inland waters cyanobacteria pigment. However, due to the small number of sensors with a spectral band of the PC absorption feature, it is difficult to develop semi-analytical models. This study evaluated the use of an empirical model to identify CHABs using TM and ETM+ sensors aboard Landsat 5 and 7 satellites. Five images were acquired for applying the model. Besides the images, data was also collected in the Guarapiranga Reservoir, in São Paulo Metropolitan Region, regarding the cyanobacteria cell count (cells/mL), which was used as an indicator of CHABs biomass. When model values were analyzed excluding calibration factors for temperate lakes, they showed a medium correlation (R²=0.81, p=0.036), while when the factors were included the model showed a high correlation (R²=0.96, p=0.003) to the cyanobacteria cell count. The empirical model analyzed proved useful as an important tool for policy makers, since it provided information regarding the horizontal distribution of CHABs which could not be acquired from traditional monitoring techniques.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the accuracy of virtual three-dimensional (3D) reconstructions of human dry mandibles, produced from two segmentation protocols (outline only and all-boundary lines).Twenty virtual three-dimensional (3D) images were built from computed tomography exam (CT) of 10 dry mandibles, in which linear measurements between anatomical landmarks were obtained and compared to an error probability of 5 %.The results showed no statistically significant difference among the dry mandibles and the virtual 3D reconstructions produced from segmentation protocols tested (p = 0,24).During the designing of a virtual 3D reconstruction, both outline only and all-boundary lines segmentation protocols can be used.Virtual processing of CT images is the most complex stage during the manufacture of the biomodel. Establishing a better protocol during this phase allows the construction of a biomodel with characteristics that are closer to the original anatomical structures. This is essential to ensure a correct preoperative planning and a suitable treatment.
Resumo:
Sparse arrays have pitch larger than half-wavelength (lambda/2) and there is a reduced number of elements in comparison with a full-populated array. Consequently, there is a reduction in cost, data acquisition and processing. However, conventional beamforming techniques result in large side and grating lobes, and consequently in image artifacts. In this work the instantaneous phase of the signals is used in a beamforming technique instead of the instantaneous amplitudes to improve images obtained from sparse arrays configurations. A threshold based on a statistical analysis and the number of signals used for imaging is applied to each pixel, in order to determine if that pixel is related to a defect or not. Three sets of data are used to evaluate the technique, considering medical and non-destructive testing: a simulated point spread function, a medical phantom and an aluminum plate with 2 lambda-, 7 lambda- and lambda-pitch, respectively. The conventional amplitude image is superposed by the image improved by the instantaneous phase, increasing the reflectors detectability and reducing artifacts for all cases, as well as dead zone for the tested plate.