896 resultados para hydroxyapatite 9-hydroxystearic acid nuclear magnetic resonance spectroscopy X-ray powder diffraction
Resumo:
Objective To determine the prevalence of cam-type deformities on hip magnetic resonance imaging (MRI) in young males. Methods This was a population-based cross-sectional study in young asymptomatic male individuals who underwent clinical examination and completed a self-report questionnaire. A random sample of participants was invited for MRI of the hip. We graded the maximal offset at the femoral head–neck junction on radial sequences using grades from 0 to 3, where 0 = normal, 1 = possible, 2 = definite, and 3 = severe deformity. The prespecified main analyses were based on definite cam-type deformity grades 2 or 3. We estimated the prevalence of the cam-type deformity adjusted for the sampling process overall and according to the extent of internal rotation. Then we determined the location of the deformity on radial MRI sequences. Results A total of 1,080 subjects were included in the study and 244 asymptomatic males with a mean age of 19.9 years attended MRI. Sixty-seven definite cam-type deformities were detected. The adjusted overall prevalence was 24% (95% confidence interval [95% CI] 19–30%). The prevalence increased with decreasing internal rotation (P < 0.001 for trend). Among those with a clinically decreased internal rotation of <30°, the estimated prevalence was 48% (95% CI 37–59%). Sixty-one of 67 cam-type deformities were located in an anterosuperior position. Conclusion Cam-type deformities can be found on MRI in every fourth young asymptomatic male individual and in every second male with decreased internal rotation. The majority of deformities are located in an anterosuperior position.
Resumo:
Objective Femoroacetabular impingement may be a risk factor for hip osteoarthritis in men. An underlying hip deformity of the cam type is common in asymptomatic men with nondysplastic hips. This study was undertaken to examine whether hip deformities of the cam type are associated with signs of hip abnormality, including labral lesions and articular cartilage damage, detectable on magnetic resonance imaging (MRI). Methods In this cross-sectional, population-based study in asymptomatic young men, 1,080 subjects underwent clinical examination and completed a self-report questionnaire. Of these subjects, 244 asymptomatic men with a mean age of 19.9 years underwent MRI. All MRIs were read for cam-type deformities, labral lesions, cartilage thickness, and impingement pits. The relationship between cam-type deformities and signs of joint damage were examined using logistic regression models adjusted for age and body mass index. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were determined. Results Sixty-seven definite cam-type deformities were detected. These deformities were associated with labral lesions (adjusted OR 2.77 [95% CI 1.31, 5.87]), impingement pits (adjusted OR 2.9 [95% CI 1.43, 5.93]), and labral deformities (adjusted OR 2.45 [95% CI 1.06, 5.66]). The adjusted mean difference in combined anterosuperior femoral and acetabular cartilage thickness was −0.19 mm (95% CI −0.41, 0.02) lower in those with cam-type deformities compared to those without. Conclusion Our findings indicate that the presence of a cam-type deformity is associated with MRI-detected hip damage in asymptomatic young men.
Resumo:
Femoroacetabular impingement is a well-described pre-arthritic condition with two main types; cam and pincer. Studies using the open treatment for impingement have described patterns of articular cartilage wear specific to cam and pincer impingement. Assessing articular damage in the hip joint is an important component of treatment. Intravenous gadolidium allows radiologists to perform an indirect assessment of articular cartilage glycosaminoglycan (GAG) content by using a technique called dGEMRIC. Using this indirect assessment of articular cartilage, we compared the dGEMRIC indices in a group of six cam and seven pincer patients to a control group (n = 12) of asymptomatic controls that had no plain MRI findings of osteoarthritis. The superior portion of the hip joint was divided into seven regions from 9 to 3 o'clock. These regions were then subdivided into peripheral and central regions. The cam and pincer groups both had statistically lower dGEMRIC values compared to the control group. The cam group demonstrated not only peripheral but also central involvement of the joint and this was concentrated in the anterior portion of the joint. The pincer group exhibited more global hip involvement with all areas of the hip averaging a dGEMRIC index 28% less than controls. With the use of dGEMRIC more specific patterns of cartilage wear can be elicited in patients with impingement, which may improve patient selection and help better understand the progression of osteoarthithis throughout the hip joint.
Resumo:
Automatic scan planning for magnetic resonance imaging of the knee aims at defining an oriented bounding box around the knee joint from sparse scout images in order to choose the optimal field of view for the diagnostic images and limit acquisition time. We propose a fast and fully automatic method to perform this task based on the standard clinical scout imaging protocol. The method is based on sequential Chamfer matching of 2D scout feature images with a three-dimensional mean model of femur and tibia. Subsequently, the joint plane separating femur and tibia, which contains both menisci, can be automatically detected using an information-augmented active shape model on the diagnostic images. This can assist the clinicians in quickly defining slices with standardized and reproducible orientation, thus increasing diagnostic accuracy and also comparability of serial examinations. The method has been evaluated on 42 knee MR images. It has the potential to be incorporated into existing systems because it does not change the current acquisition protocol.
Resumo:
Structural abnormalities of the medial aorta have been described for conotruncal defects (e.g., tetralogy of Fallot [TOF] and complete transposition of the great arteries (dextrotransposition [d]-TGA). In TOF, progressive aortic dilation is a frequent finding. In patients with d-TGA with an atrial switch, this problem is less often described. The aim of the present study was to compare the extent of dilative aortopathy and aortic distensibility in adults with an atrial switch procedure (n = 39) to that in adults with repaired TOF (n = 39) and controls (n = 39), using cardiac magnetic resonance imaging. The groups were matched for age and gender. Diameters of the aorta indexed to the body surface area were significantly increased in the patients with d-TGA and TOF compared to that of the controls at the aortic sinus up to the level of the right pulmonary artery. On multivariate testing, the diagnosis of a conotruncal defect (β = 0.260; p = 0.003) and aortic regurgitant fraction (β = 0.405; p <0.001) were independent predictors of an increased aortic sinus diameter. Ascending aorta distensibility was significantly reduced in those with d-TGA and TOF compared to controls: 3.6 (interquartile range 1.5 to 4.4) versus 2.8 (interquartile range 2.0 to 3.7) versus 5.5 (interquartile range 4.8 to 6.9) ×10(-3) mm Hg(-1) (p <0.001). The independent predictors of ascending aorta distensibility were the diagnosis of a conotruncal defect (p <0.001) and age (p = 0.028). In conclusion, intrinsic aortopathy, manifested as increased ascending aortic diameters and reduced ascending aortic distensibility, is not only evident in adults with TOF, but also in adults with d-TGA and an atrial switch procedure. Long-term follow-up is needed to monitor the aortic size in both patient groups.
Resumo:
In adults with congenital heart disease and a systemic right ventricle, subaortic ventricular systolic dysfunction is common. Echocardiographic assessment of systolic right ventricular (RV) function in these patients is important but challenging. The aim of the present study was to assess the reliability of conventional echocardiographic RV functional parameters to quantify the systolic performance of a subaortic right ventricle. We compared 56 contemporary echocardiograms and cardiac magnetic resonance studies in 37 adults, aged 26.9 ± 7.4 years, with complete transposition and a subaortic right ventricle. The fractional area change (FAC), lateral tricuspid annular plane systolic excursion, lateral RV systolic motion velocities by tissue Doppler, RV myocardial performance index, and the rate of systolic RV pressure increase (dp/dt) measured across the tricuspid regurgitant jet were assessed by echocardiography and correlated with the cardiac magnetic resonance-derived RV ejection fraction (EF). The mean RVEF was 48.0 ± 7.8%. FAC (r(2) = 0.206, p = 0.001) and dp/dt (r(2) = 0.173, p = 0.009) significantly correlated with RVEF, and the other nongeometric echocardiographic parameters failed to show a significant correlation with RVEF by linear regression analysis. FAC <33% and dp/dt <1,000 mm Hg/s identified a RVEF of <50% with a sensitivity of 77% and 69% and a specificity of 58% and 87%, respectively. In conclusion, in patients with a systemic right ventricle, routine nongeometric echocardiographic parameters of RV function correlated weakly with cardiac magnetic resonance-derived EF. RV FAC and the measurement of the rate of systolic RV pressure increase (dp/dt) should be preferentially used to assess systemic systolic function in adult patients with a subaortic right ventricle.
Resumo:
Time-of-flight (ToF) and phase contrast (PC) magnetic resonance angiographies (MRAs) are noninvasive applications to depict the cerebral arteries. Both approaches can image the cerebral vasculature without the administration of intravenous contrast. Therefore, it is used in routine clinical evaluation of cerebrovascular diseases, e.g., aneurysm and arteriovenous malformations. However, subtle microvascular disease usually cannot be resolved with standard, clinical-field-strength MRA. The purpose of this study was to compare the ability of ToF and PC MRA to visualize the cerebral arteries at increasing field strengths.
Resumo:
The work described herein is aimed at understanding primary and secondary aggregation of bile salt micelles and how micelles can perform chiral recognition of binapthyl analytes. Previous work with cholate and deoxycholate using micellar electrokinetic chromatography (MEKC) and nuclear magnetic resonance (NMR) has provided insightinto cholate and deoxycholate micelle formation, especially with respect to the critical micelle concentration (CMC). Chiral separations of the model analyte, 1,1â??-binaphthyl-2,2â??-diyl hydrogen phosphate (BNDHP), via cholate (C) and deoxycholate (DC) mediated MEKC separataions previously have shown the DC CMC to be 7-10 mM andthe cholate CMC at 14 mM at ph 12. A second model analyte,1,1â??-binaphthol (BN), was also previously investigated to probe micellar structure, but the MEKC data for this analyte implied a higher CMC, which may be interpreted as secondary aggregation. Thiswork extends the investigation of bile salts to include pulsed field gradient spin echo (PFGSE) NMR experiments being used to gain information about the size and degree of polydispersity of cholate and deoxycholate micelles. Concentrations of cholate below 10mM show a large variation in effective radius likely due to the existence of transient preliminary aggregates. The onset of the primary micelle shows a dramatic increase in effective radius of the micelle in cholate and deoxycholate. In the region of expectedsecondary aggregation a gradual increase of effective radius was observed with cholate; deoxycholate showed a persistent aggregate size in the secondary micelle region that is modulated by the presence of an analyte molecule. Effective radii of cholate anddeoxycholate (individually) were compared with and without R- and S-BNDHP in order to observe the effective radius difference of micelles with and without analyte present. The presence of S-BNDHP consistently resulted in a larger effective aggregate radius incholate and deoxycholate, confirming previous data of the S-BNDHP interacting more with the micelle than R-BNDHP. In total, various NMR techniques, like diffusion NMR can be used to gain a greater understanding of the bile salt micellization process and chiral resolution.
Resumo:
Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.
Resumo:
In forensic autopsies, one of the most important and common signs of violence to the neck is hemorrhages of the soft tissues. The Institute of Forensic Medicine in Bern evaluates the usefulness of postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) of forensic cases prior to autopsy. The aim of this study was to prove the sensitivity of postmortem MSCT and MRI in the detection of hemorrhages of the neck muscles. A full body scan prior to and a detailed scan of the explanted larynx after autopsy were performed. MSCT detected multiple fractures of the larynx. Detailed MRI was able to demonstrate the hemorrhage of the left posterior cricoarytenoid muscle. The minor hemorrhage of the right posterior cricoarytenoid muscle could not be detected with certainty. Although more experience is required, we conclude that combined MRI and MSCT examination is a useful tool for documentation and examination of neck muscle hemorrhages in forensic cases.
Resumo:
BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.
Resumo:
BACKGROUND: The pathology of restless legs syndrome (RLS) is still not understood. To investigate the pathomechanism of the disorder further we recorded a surface electromyogram (EMG) of the anterior tibial muscle during functional magnetic resonance imaging (fMRI) in patients with idiopathic RLS. METHODS: Seven subjects with moderate to severe RLS were investigated in the present pilot study. Patients were lying supine in the scanner for over 50min and were instructed not to move voluntarily. Sensory leg discomfort (SLD) was evaluated on a 10-point Likert scale. For brain image analysis, an algorithm for the calculation of tonic EMG values was developed. RESULTS: We found a negative correlation of tonic EMG and SLD (p <0.01). This finding provides evidence for the clinical experience that RLS-related subjective leg discomfort increases during muscle relaxation at rest. In the fMRI analysis, the tonic EMG was associated with activation in motor and somatosensory pathways and also in some regions that are not primarily related to motor or somatosensory functions. CONCLUSIONS: By using a newly developed algorithm for the investigation of muscle tone-related changes in cerebral activity, we identified structures that are potentially involved in RLS pathology. Our method, with some modification, may also be suitable for the investigation of phasic muscle activity that occurs during periodic leg movements.
Resumo:
A multimodal MR study including relaxometry, diffusion tensor imaging (DTI), and MR spectroscopy was performed on patients with classical phenylketonuria (PKU) and matched controls, to improve our understanding of white matter (WM) lesions. Relaxometry yields information on myelin loss or malformation and may substantiate results from DTI attributed to myelin changes. Relaxometry was used to determine four brain compartments in normal-appearing brain tissue (NABT) and in lesions: water in myelin bilayers (myelin water, MW), water in gray matter (GM), water in WM, and water with long relaxation times (cerebrospinal fluid [CSF]-like signals). DTI yielded apparent diffusion coefficients (ADCs) and fractional anisotropies. MW and WM content were reduced in NABT and in lesions of PKU patients, while CSF-like signals were significantly increased. ADC values were reduced in PKU lesions, but also in the corpus callosum. Diffusion anisotropy was reduced in lesions because of a stronger decrease in the longitudinal than in the transverse diffusion. WM content and CSF-like components in lesions correlated with anisotropy and ADC. ADC values in lesions and in the corpus callosum correlated negatively with blood and brain phenylalanine (Phe) concentrations. Intramyelinic edema combined with vacuolization is a likely cause of the WM alterations. Correlations between diffusivity and Phe concentrations confirm vulnerability of WM to high Phe concentrations.
Resumo:
Magnetic resonance spectroscopy (MRS) of skeletal muscle has been successfully applied by physiologists over several decades, particularly for studies of high-energy phosphates (by (31)P-MRS) and glycogen (by (13)C-MRS). Unfortunately, the observation of these heteronuclei requires equipment that is typically not available on clinical MR scanners, such as broadband capability and a second channel for decoupling and nuclear Overhauser enhancement (NOE). On the other hand, (1)H-MR spectra of skeletal muscle can be acquired on many routine MR systems and also provide a wealth of physiological information. In particular, studies of intramyocellular lipids (IMCL) attract physiologists and endocrinologists because IMCL levels are related to insulin resistance and thus can lead to a better understanding of major health problems in industrial countries. The combination of (1)H-, (13)C-, and (31)P-MRS gives access to the major long- and short-term energy sources of skeletal muscle. This review summarizes the technical aspects and unique MR-methodological features of the different nuclei. It reviews clinical studies that employed MRS of one or more nuclei, or combinations of MRS with other MR modalities. It also illustrates that MR spectra contain additional physiological information that is not yet used in routine clinical applications.