896 resultados para higher order field theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il est bien établi que le thalamus joue un rôle crucial dans la génération de l’oscillation lente synchrone dans le cortex pendant le sommeil lent. La puissance des ondes lente / delta (0.2-4 Hz) est un indicateur quantifiable de la qualité du sommeil. La contribution des différents noyaux thalamiques dans la génération de l’activité à ondes lentes et dans sa synchronisation n’est pas connue. Nous émettons l’hypothèse que les noyaux thalamiques de premier ordre (spécifiques) influencent localement l’activité à ondes lentes dans les zones corticales primaires, tandis que les noyaux thalamiques d’ordre supérieur (non spécifiques) synchronisent globalement les activités à ondes lentes à travers de larges régions corticales. Nous avons analysé les potentiels de champ locaux et les activités de décharges de différentes régions corticales et thalamiques de souris anesthésiées alors qu’un noyau thalamique était inactivé par du muscimol, un agoniste des récepteurs GABA. Les enregistrements extracellulaires multi-unitaires dans les noyaux thalamiques de premier ordre (VPM) et d’ordre supérieur (CL) montrent des activités de décharges considérablement diminuées et les décharges par bouffées de potentiels d’action sont fortement réduites après inactivation. Nous concluons que l’injection de muscimol réduit fortement les activités de décharges et ne potentialise pas la génération de bouffées de potentiel d’action à seuil bas. L’inactivation des noyaux thalamiques spécifiques avec du muscimol a diminué la puissance lente / delta dans la zone corticale primaire correspondante. L’inactivation d’un noyau non spécifique avec le muscimol a significativement réduit la puissance delta dans l’ensemble du cortex étudié. Nos expériences démontrent que le thalamus a un rôle crucial dans la génération de l’oscillation lente corticale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valveless pulsejets are extremely simple aircraft engines; essentially cleverly designed tubes with no moving parts. These engines utilize pressure waves, instead of machinery, for thrust generation, and have demonstrated thrust-to-weight ratios over 8 and thrust specific fuel consumption levels below 1 lbm/lbf-hr – performance levels that can rival many gas turbines. Despite their simplicity and competitive performance, they have not seen widespread application due to extremely high noise and vibration levels, which have persisted as an unresolved challenge primarily due to a lack of fundamental insight into the operation of these engines. This thesis develops two theories for pulsejet operation (both based on electro-acoustic analogies) that predict measurements better than any previous theory reported in the literature, and then uses them to devise and experimentally validate effective noise reduction strategies. The first theory analyzes valveless pulsejets as acoustic ducts with axially varying area and temperature. An electro-acoustic analogy is used to calculate longitudinal mode frequencies and shapes for prescribed area and temperature distributions inside an engine. Predicted operating frequencies match experimental values to within 6% with the use of appropriate end corrections. Mode shapes are predicted and used to develop strategies for suppressing higher modes that are responsible for much of the perceived noise. These strategies are verified experimentally and via comparison to existing models/data for valveless pulsejets in the literature. The second theory analyzes valveless pulsejets as acoustic systems/circuits in which each engine component is represented by an acoustic impedance. These are assembled to form an equivalent circuit for the engine that is solved to find the frequency response. The theory is used to predict the behavior of two interacting pulsejet engines. It is validated via comparison to experiment and data in the literature. The technique is then used to develop and experimentally verify a method for operating two engines in anti-phase without interfering with thrust production. Finally, Helmholtz resonators are used to suppress higher order modes that inhibit noise suppression via anti-phasing. Experiments show that the acoustic output of two resonator-equipped pulsejets operating in anti-phase is 9 dBA less than the acoustic output of a single pulsejet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence suggest that academic staff face difficulties in applying new technologies as a means of assessing higher order assessment outcomes such as critical thinking, problem solving and creativity. Although higher education institutional mission statements and course unit outlines purport the value of these higher order skills there is still some question about how well academics are equipped to design curricula and, in particular, assessment strategies accordingly. Despite a rhetoric avowing the benefits of these higher order skills, it has been suggested that academics set assessment tasks up in such a way as to inadvertently lead students on the path towards lower order outcomes. This is a controversial claim, and one that this paper seeks to explore and critique in terms of challenging the conceptual basis of assessing higher order skills through new technologies. It is argued that the use of digital media in higher education is leading to a focus on student's ability to use and manipulate of these products as an index of their flexibility and adaptability to the demands of the knowledge economy. This focus mirrors market flexibility and encourages programmes and courses of study to be rhetorically packaged as such. Curricular content has becomes a means to procure more or less elaborate aggregates of attributes. Higher education is now charged with producing graduates who are entrepreneurial and creative in order to drive forward economic sustainability. It is argued that critical independent learning can take place through the democratisation afforded by cultural and knowledge digitization and that assessment needs to acknowledge the changing relations between audience and author, expert and amateur, creator and consumer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os oceanos representam um dos maiores recursos naturais, possuindo expressivo potencial energético, podendo suprir parte da demanda energética mundial. Nas últimas décadas, alguns dispositivos destinados à conversão da energia das ondas dos oceanos em energia elétrica têm sido estudados. No presente trabalho, o princípio de funcionamento do conversor do tipo Coluna de Água Oscilante, do inglês Oscillating Water Colum, (OWC) foi analisado numericamente. As ondas incidentes na câmara hidro-pneumática da OWC, causam um movimento alternado da coluna de água no interior da câmara, o qual produz um fluxo alternado de ar que passa pela chaminé. O ar passa e aciona uma turbina a qual transmite energia para um gerador elétrico. O objetivo do presente estudo foi investigar a influência de diferentes formas geométricas da câmara sobre o fluxo resultante de ar que passa pela turbina, que influencia no desempenho do dispositivo. Para isso, geometrias diferentes para o conversor foram analisadas empregando modelos computacionais 2D e 3D. Um modelo computacional desenvolvido nos softwares GAMBIT e FLUENT foi utilizado, em que o conversor OWC foi acoplado a um tanque de ondas. O método Volume of Fluid (VOF) e a teoria de 2ª ordem Stokes foram utilizados para gerar ondas regulares, permitindo uma interação mais realista entre o conversor, água, ar e OWC. O Método dos Volumes Finitos (MVF) foi utilizado para a discretização das equações governantes. Neste trabalho o Contructal Design (baseado na Teoria Constructal) foi aplicado pela primeira vez em estudos numéricos tridimensionais de OWC para fim de encontrar uma geometria que mais favorece o desempenho do dispositivo. A função objetivo foi a maximização da vazão mássica de ar que passa através da chaminé do dispositivo OWC, analisado através do método mínimos quadrados, do inglês Root Mean Square (RMS). Os resultados indicaram que a forma geométrica da câmara influencia na transformação da energia das ondas em energia elétrica. As geometrias das câmaras analisadas que apresentaram maior área da face de incidência das ondas (sendo altura constante), apresentaram também maior desempenho do conversor OWC. A melhor geometria, entre os casos desse estudo, ofereceu um ganho no desempenho do dispositivo em torno de 30% maior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an integration of the SVC decision procedure with the HOL theorem prover. This integration was achieved using the PROSPER toolkit. The SVC decision procedure operates on rational numbers, an axiomatic theory for which was provided in HOL. The decision procedure also returns counterexamples and a framework has been devised for handling counterexamples in a HOL setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic diagrammatic expansion for Gutzwiller wavefunctions (DE-GWFs) proposed very recently is used for the description of the superconducting (SC) ground state in the two-dimensional square-lattice t-J model with the hopping electron amplitudes t (and t') between nearest (and next-nearest) neighbors. For the example of the SC state analysis we provide a detailed comparison of the method's results with those of other approaches. Namely, (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results and (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed 'grand-canonical Gutzwiller approximation' (called either GCGA or SGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a d(x2-y2) wave only for optimally and overdoped systems, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent developments in the physical parameterizations available in spectral wave models have already been validated, but there is little information on their relative performance especially with focus on the higher order spectral moments and wave partitions. This study concentrates on documenting their strengths and limitations using satellite measurements, buoy spectra, and a comparison between the different models. It is confirmed that all models perform well in terms of significant wave heights; however higher-order moments have larger errors. The partition wave quantities perform well in terms of direction and frequency but the magnitude and directional spread typically have larger discrepancies. The high-frequency tail is examined through the mean square slope using satellites and buoys. From this analysis it is clear that some models behave better than the others, suggesting their parameterizations match the physical processes reasonably well. However none of the models are entirely satisfactory, pointing to poorly constrained parameterizations or missing physical processes. The major space-time differences between the models are related to the swell field stressing the importance of describing its evolution. An example swell field confirms the wave heights can be notably different between model configurations while the directional distributions remain similar. It is clear that all models have difficulty in describing the directional spread. Therefore, knowledge of the source term directional distributions is paramount in improving the wave model physics in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relational reasoning, or the ability to identify meaningful patterns within any stream of information, is a fundamental cognitive ability associated with academic success across a variety of domains of learning and levels of schooling. However, the measurement of this construct has been historically problematic. For example, while the construct is typically described as multidimensional—including the identification of multiple types of higher-order patterns—it is most often measured in terms of a single type of pattern: analogy. For that reason, the Test of Relational Reasoning (TORR) was conceived and developed to include three other types of patterns that appear to be meaningful in the educational context: anomaly, antinomy, and antithesis. Moreover, as a way to focus on fluid relational reasoning ability, the TORR was developed to include, except for the directions, entirely visuo-spatial stimuli, which were designed to be as novel as possible for the participant. By focusing on fluid intellectual processing, the TORR was also developed to be fairly administered to undergraduate students—regardless of the particular gender, language, and ethnic groups they belong to. However, although some psychometric investigations of the TORR have been conducted, its actual fairness across those demographic groups has yet to be empirically demonstrated. Therefore, a systematic investigation of differential-item-functioning (DIF) across demographic groups on TORR items was conducted. A large (N = 1,379) sample, representative of the University of Maryland on key demographic variables, was collected, and the resulting data was analyzed using a multi-group, multidimensional item-response theory model comparison procedure. Using this procedure, no significant DIF was found on any of the TORR items across any of the demographic groups of interest. This null finding is interpreted as evidence of the cultural-fairness of the TORR, and potential test-development choices that may have contributed to that cultural-fairness are discussed. For example, the choice to make the TORR an untimed measure, to use novel stimuli, and to avoid stereotype threat in test administration, may have contributed to its cultural-fairness. Future steps for psychometric research on the TORR, and substantive research utilizing the TORR, are also presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is concerned with the construction of general isotropic and anisotropic adaptive strategies, as well as hp-mesh refinement techniques, in combination with dual-weighted-residual a posteriori error indicators for the discontinuous Galerkin finite element discretization of compressible fluid flow problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud edge mixing plays an important role in the life cycle and development of clouds. Entrainment of subsaturated air affects the cloud at the microscale, altering the number density and size distribution of its droplets. The resulting effect is determined by two timescales: the time required for the mixing event to complete, and the time required for the droplets to adjust to their new environment. If mixing is rapid, evaporation of droplets is uniform and said to be homogeneous in nature. In contrast, slow mixing (compared to the adjustment timescale) results in the droplets adjusting to the transient state of the mixture, producing an inhomogeneous result. Studying this process in real clouds involves the use of airborne optical instruments capable of measuring clouds at the `single particle' level. Single particle resolution allows for direct measurement of the droplet size distribution. This is in contrast to other `bulk' methods (i.e. hot-wire probes, lidar, radar) which measure a higher order moment of the distribution and require assumptions about the distribution shape to compute a size distribution. The sampling strategy of current optical instruments requires them to integrate over a path tens to hundreds of meters to form a single size distribution. This is much larger than typical mixing scales (which can extend down to the order of centimeters), resulting in difficulties resolving mixing signatures. The Holodec is an optical particle instrument that uses digital holography to record discrete, local volumes of droplets. This method allows for statistically significant size distributions to be calculated for centimeter scale volumes, allowing for full resolution at the scales important to the mixing process. The hologram also records the three dimensional position of all particles within the volume, allowing for the spatial structure of the cloud volume to be studied. Both of these features represent a new and unique view into the mixing problem. In this dissertation, holographic data recorded during two different field projects is analyzed to study the mixing structure of cumulus clouds. Using Holodec data, it is shown that mixing at cloud top can produce regions of clear but humid air that can subside down along the edge of the cloud as a narrow shell, or advect down shear as a `humid halo'. This air is then entrained into the cloud at lower levels, producing mixing that appears to be very inhomogeneous. This inhomogeneous-like mixing is shown to be well correlated with regions containing elevated concentrations of large droplets. This is used to argue in favor of the hypothesis that dilution can lead to enhanced droplet growth rates. I also make observations on the microscale spatial structure of observed cloud volumes recorded by the Holodec.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the work described in this dissertation is the development of new wireless passive force monitoring platforms for applications in the medical field, specifically monitoring lower limb prosthetics. The developed sensors consist of stress sensitive, magnetically soft amorphous metallic glass materials. The first technology is based on magnetoelastic resonance. Specifically, when exposed to an AC excitation field along with a constant DC bias field, the magnetoelastic material mechanically vibrates, and may reaches resonance if the field frequency matches the mechanical resonant frequency of the material. The presented work illustrates that an applied loading pins portions of the strip, effectively decreasing the strip length, which results in an increase in the frequency of the resonance. The developed technology is deployed in a prototype lower limb prosthetic sleeve for monitoring forces experienced by the distal end of the residuum. This work also reports on the development of a magnetoharmonic force sensor comprised of the same material. According to the Villari effect, an applied loading to the material results in a change in the permeability of the magnetic sensor which is visualized as an increase in the higher-order harmonic fields of the material. Specifically, by applying a constant low frequency AC field and sweeping the applied DC biasing field, the higher-order harmonic components of the magnetic response can be visualized. This sensor technology was also instrumented onto a lower limb prosthetic for proof of deployment; however, the magnetoharmonic sensor illustrated complications with sensor positioning and a necessity to tailor the interface mechanics between the sensing material and the surface being monitored. The novelty of these two technologies is in their wireless passive nature which allows for long term monitoring over the life time of a given device. Additionally, the developed technologies are low cost. Recommendations for future works include improving the system for real-time monitoring, useful for data collection outside of a clinical setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire has been always a major concern for designers of steel and concrete structures. Designing fire-resistant structural elements is not an easy task due to several limitations such as the lack of fire-resistant construction materials. Concrete reinforcement cover and external insulation are the most commonly adopted systems to protect concrete and steel from overheating, while spalling of concrete is minimised by using HPFRC instead of standard concrete. Although these methodologies work very well for low rise concrete structures, this is not the case for high-rise and inaccessible buildings where fire loading is much longer. Fire can permanently damage structures that cost a lot of money. This is unsafe and can lead to loss of life. In this research, the author proposes a new type of main reinforcement for concrete structures which can provide better fire-resistance than steel or FRP re-bars. This consists of continuous braided fibre rope, generally made from fire-resistant materials such as carbon or glass fibre. These fibres have excellent tensile strengths, sometimes in excess of ten times greater than steel. In addition to fire-resistance, these ropes can produce lighter and corrosive resistant structures. Avoiding the use of expensive resin binders, fibres are easily bound together using braiding techniques, ensuring that tensile stress is evenly distributed throughout the reinforcement. In order to consider braided ropes as a form of reinforcement it is first necessary to establish the mechanical performance at room temperature and investigate the pull-out resistance for both unribbed and ribbed ropes. Ribbing of ropes was achieved by braiding the rope over a series of glass beads. Adhesion between the rope and concrete was drastically improved due to ribbing, and further improved by pre-stressing ropes and reducing the slacked fibres. Two types of material have been considered for the ropes: carbon and aramid. An implicit finite element approach is proposed to model braided fibres using Total Lagrangian formulation, based on the theory of small strains and large rotations. Modelling tows and strands as elastic transversely isotropic materials was a good assumption when stiff and brittle fibres such as carbon and glass fibres are considered. The rope-to-concrete and strand-to-strand bond interaction/adhesion was numerically simulated using newly proposed hierarchical higher order interface elements. Elastic and linear damage cohesive models were used effectively to simulate non-penetrative 'free' sliding interaction between strands, and the adhesion between ropes and concrete respectively. Numerical simulation showed similar de-bonding features when compared with experimental pull-out results of braided ribbed rope reinforced concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente trabajo se realizó con el objetivo de tener una visión completa de las teorías del liderazgo, teniendo de este una concepción como proceso y poder examinar las diversas formas de aplicación en las organizaciones contemporáneas. El tema es enfocado desde la perspectiva organizacional, un mundo igualmente complejo, sin desconocer su importancia en otros ámbitos como la educación, la política o la dirección del estado. Su enfoque tiene que ver con el estudio académico del cual es la culminación y se enmarca dentro de la perspectiva constitucional de la Carta Política Colombiana que reconoce la importancia capital que tienen la actividad económica y la iniciativa privada en la constitución de empresas. Las diversas visiones del liderazgo han sido aplicadas de distintas maneras en las organizaciones contemporáneas y han generado diversos resultados. Hoy, no es posible pensar en una organización que no haya definido su forma de liderazgo y en consecuencia, confluyen en el campo empresarial multitud de teorías, sin que pueda afirmarse que una sola de ellas permita el manejo adecuado y el cumplimiento de los objetivos misionales. Por esta razón se ha llegado a concebir el liderazgo como una función compleja, en un mundo donde las organizaciones mismas se caracterizan no solo por la complejidad de sus acciones y de su conformación, sino también porque esta característica pertenece también al mundo de la globalización. Las organizaciones concebidas como máquinas que en sentido metafórico logran reconstituirse sus estructuras a medida que están en interacción con otras en el mundo globalizado. Adaptarse a las cambiantes circunstancias hace de las organizaciones conglomerados en permanente dinámica y evolución. En este ámbito puede decirse que el liderazgo es también complejo y que es el liderazgo transformacional el que más se acerca al sentido de la complejidad.