951 resultados para heart muscle necrosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles during rapid self-terminated movements, has been controversial. Here we show by computer simulation that the pattern emerges from interactions between a central neural trajectory controller (VITE circuit) and a peripheral neuromuscularforce controller (FLETE circuit). Both neural models have been derived from simple functional constraints that have led to principled explanations of a wide variety of behavioral and neurobiological data, including, as shown here, the generation of tri-phasic bursts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the advantages of biological skeleto-motor systems is the opponent muscle design, which in principle makes it possible to achieve facile independent control of joint angle and joint stiffness. Prior analysis of equilibrium states of a biologically-based neural network for opponent muscle control, the FLETE model, revealed that such independent control requires specialized interneuronal circuitry to efficiently coordinate the opponent force generators. In this chapter, we refine the FLETE circuit variables specification and update the equilibrium analysis. We also incorporate additional neuronal circuitry that ensures efficient opponent force generation and velocity regulation during movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The observations of Hooke (1665), Schleiden & Schwann (1839) and Virchow (1855) led to the identification of the cell as the basic structural unit of living material. In the intervening years, it has been firmly established that the chemical processes which underlie the proper functioning, development and reproduction of the organism are cellular activities. The development of the electron microscope has enabled cell structure to be studied in detail. A picture of the cell as an entity with a complex and highly organised internal structure has emerged from the work of Palade, Porter, Fernandez-Moran and many others. Although cells from different tissues and organisms differ in aspects of their structure and consequently in function, they have several features in common. A retentive membrane encloses a number of cell constituents, which include membrane-enclosed subcellular structures known as organelles. The cells of most tissues also contain a reticulum or system of branching tubules. The interplay of the biochemical activities of these structures enables the cell to function. Almost thirty years ago, Claude, Palade, Schneider, Hogeboom, de Duve and others set out to analytically fractionate the subcellular components obtained after the fragmentation of liver cells. This approach has become known as subcellular fractionation, and signalled a major conceptual breakthrough in biochemistry (reviewed by de Duve, 1964, 1967, 1971). The significance of this breakthrough has been underlined by the award of the 1974 Nobel Prize in Medicine to de Duve, Palade and Claude. This thesis is concerned with the application of subcellular fractionation techniques to the separation and characterisation of the membrane systems of the rabbit skeletal muscle cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actinins are cytoskeleton proteins that cross-link actin filaments. Evolution of the actinin family resulted in the formation of Ca++-insensitive muscle isoforms (actinin-2 and- 3) and Ca++-sensitive non-muscle isoforms (actinin-1 and -4) with regard to their actin-binding function. Despite high sequence similarity, unique properties have been ascribed to actinin-4 compared with actinin-1. Actinin-4 is the predominant isoform reported to be associated with the cancer phenotype. Actinin-4, but not actinin-1, is essential for normal glomerular function in the kidney and and is able to translocate to the nucleus to regulate transcription. To understand the molecular basis for such isoform-specific functions I have comprehensively compared these proteins in terms of localisation, migration, alternative splicing, actin-binding properties, heterodimer formation and molecular interactions for the first time. This work characterises a number of commercially available actinin antibodies and in doing so, identifies actinin-1, -2 and -4 isoform-specific antibodies that enabled studies of actinin expression and localisation. This work identifies the actinin rod domain as the predominant domain that influences actinin localisation however localisation is likely to be effected by the entire actinin protein. si-RNA- mediated knockdown of actinin-1 and -4 did not affect migration in a number of cell lines highlighting that migration may only require a fraction of total non-muscle actinin levels. This work finds that the Ca++-insensitive variant of actinin-4 is expressed only in the nervous system and thus cannot be regarded as a smooth muscle isoform, as is the case for the Ca++-insensitive variant of actinin-1. This work also identifies a previously unreported exon 19a+19b expressing variant of actinin-4 in human skeletal muscle. This work finds that alternative splice variants of actinin-1 and -4 are co-expressed in a number of tissues, in particular the brain. In contrast to healthy brain, glioblastoma cells express Ca++-sensitive variants of both actinin-1 and -4. Actin-binding properties of actinin-1 and -4 are similar and are unlikely to explain isoform-specific functions. Surprisingly, this work reveals that actinin-1/-4 heterodimers, rather than homodimers, are the most abundant form of actinin in many cancer cell lines. Taken together this data suggests that actinin-1 and -4 cannot be viewed as distinct entities from each other but rather as proteins that can exist in both homodimeric and heterodimeric forms. Finally, this work employs yeast two-hybrid and proteomic approaches to identify actinin-interacting proteins. In doing so, this work identifies a number of putative actinin-4 specific interacting partners that may help to explain some of the unique functions attributed the actinin-4. The observation of alternative splice variants of actinin-1 and -4 combined with the observed potential of these proteins to form homodimers and heterodimers suggests that homodimers and heterodimers with novel actin-binding properties and interaction networks may exist. The ability to behave in this manner may have functional implications. This may be of importance considering that these proteins are central to such processes as cell migration and adhesion. This significantly alters our view of the non-muscle actinins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The differentiation of stem cells into multiple lineages has been explored in vascular regenerative medicine. However, in the case of smooth muscle cells (SMC), issues exist concerning inefficient rates of differentiation. In stem cells, multiple repressors potentially downregulate myocardin, the potent SRF coactivator induced SMC transcription including Krüppel like zinc finger transcription factor-4 (KLF4). This thesis aimed to explore the role of KLF4 in the regulation of myocardin gene expression in human smooth muscle stem/progenitor cells (hSMSPC), a novel circulating stem cell identified in our laboratory which expresses low levels of myocardin and higher levels of KLF4. hSMSPC cells cultured in SmGM2 1% FBS with TGF-β1 (5 ng/ml “differentiation media”) show limited SMC cell differentiation potential. Furthermore, myocardin transduced hSMSPC cells cultured in differentiation media induced myofilamentous SMC like cells with expression of SM markers. Five potential KLF4 binding sites were identified in silico within 3.9Kb upstream of the translational start site of the human myocardin promoter. Chromatin immunoprecipitation assays verified that endogenous KLF4 binds the human myocardin promoter at -3702bp with Respect to the translation start site (-1). Transduction of lentiviral vectors encoding either myocardin cDNA (LV_myocardin) or KLF4 targeting shRNA (LV_shKLF4 B) induced human myocardin promoter activity in hSMSPCs. Silencing of KLF4 expression in differentiation media induced smooth muscle like morphology by day 5 in culture and increased overtime with expression of SMC markers in hSMSPCs. Implantation of silastic tubes into the rat peritoneal cavity induces formation of a tissue capsule structure which may be used as vascular grafts. Rat SMSPCs integrate into, strengthen and enhance the SMC component of such tubular capsules. These data demonstrate that KLF4 directly represses myocardin gene expression in hSMSPCs, which when differentiated, provide a potential source of SMCs in the development of autologous vascular grafts in regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular smooth muscle cells (VSMC) are one of the key players in the pathogenesis of cardiovascular diseases. The origin of neointimal VSMC has thus become a prime focus of research. VSMC originate from multiple progenitors cell types. In embryo the well-defined sources of VSMC include; neural crest cells, proepicardial cells and EPC. In adults, though progenitor cells from bone marrow (BM), circulation and tissues giving rise to SMC have been identified, no progress has been made in terms of isolating highly proliferative clonal population of adult stem cells with potential to differentiate into SMC. Smooth muscle like stem progenitor cells (SMSPC) were isolated from cardiopulmonary bypass filters of adult patients undergoing CABG. Rat SMSPC have previously been isolated by our group from the bone marrow of Fischer rats and also from the peripheral blood of monocrotaline induced pulmonary hypertension (MCT-PHTN) animal model. Characterization of novel SMSPC exhibited stem cell characteristics and machinery for differentiation into SMC. The expression of Isl-1 on SMSPC provided unique molecular identity to these circulating stem progenitor cells. The functional potential of SMSPC was determined by monitoring adoptive transfer of GFP+ SMSPC in rodent models of vascular injury; carotid injury and MCT-PHTN. The participation of SMSPC in vascular pathology was confirmed by quantifying the peripheral blood, and engrafted levels of SMSPC using RT-PCR. In terms of translating into clinical practice, SMSPC could be a good tool for detecting the atherosclerotic plaque burden. The current study demonstrates the existence of novel adult stem progenitor cells in circulation, with the potential role in vascular pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne Muscular Dystrophy (DMD) is a fatal multi-system neuromuscular disease caused by loss of dystrophin. The loss of dystrophin from membranes of contractile muscle cells and the dysregulation of the DAPC, induces chronic inflammation due to tissue necrosis and eventual replacement with collagen which weakens muscular force and strength. Dystrophin deficiency may cause under-diagnosed features of DMD include mood disorders such as depression and anxiety and dysfunction of the gastrointestinal tract. The first study in the thesis examined mood in the dystrophin-deficient mdx mouse model of DMD and examined the effects of the tri-cyclic antidepressant, amitriptyline on behaviours. Amitriptyline had anti-depressant and anxiolytic effects in the mdx mice possibly through effects on stress factors such as corticotrophin-releasing factor (CRF). This antidepressant also reduced skeletal muscle inflammation and caused a reduction in circulating interleukin (IL)-6 levels. In the second and third studies, we specifically blocked IL-6 signalling and used Urocortin 2, CRFR2 agonist to investigate their potential as therapeutic targets in mdx mice pathophysiology. Isometric and isotonic contractile properties of the diaphragm, were compared in mdx mice treated with anti IL-6 receptor antibodies (anti IL-6R) and/or Urocortin 2. Deficits in force production, work and power detected in mdx mice were improved with treatment. In study three I investigated contractile properties in gastrointestinal smooth muscle. As compared to wild type mice, mdx mice had slower faecal transit times, shorter colons with thickened muscle layers and increased contractile activity in response to recombinant IL-6. Blocking IL-6 signalling resulted in an increase in colon length, normalised faecal output times and a reduction in IL-6-evoked contractile activity. The findings from these studies indicate that for both diaphragm and gastrointestinal function in a dystrophin-deficient model, targeting of IL-6 and CRFR2 signalling has beneficial therapeutic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic sustained hypoxia (CH) induces functional weakness, atrophy, and mitochondrial remodelling in the diaphragm muscle. Animal models of CH present with changes similar to patients with respiratory-related disease, thus, elucidating the molecular mechanisms driving these adaptations is clinically important. We hypothesize that ROS are pivotal in diaphragm muscle adaptation to CH. C57BL6/J mice were exposed to CH (FiO2=0.1) for one, three, and six weeks. Sternohyoid (upper airway dilator), extensor digitorum longus (EDL), and soleus were studied as reference muscles as well as the diaphragm. The diaphragm was profiled using a redox proteomics approach followed by mass spectrometry. Following this, redox-modified metabolic enzyme activities and atrophy signalling were assessed using spectrophotometric assays and ELISA. Diaphragm isotonic performance was assessed after six weeks of CH ± chronic antioxidant supplementation. Protein carbonyl and free thiol content in the diaphragm were increased and decreased respectively after six weeks of CH – indicative of protein oxidation. These changes were temporally modulated and muscle specific. Extensive remodelling of metabolic proteins occurred and the stress reached the cross-bridge. Metabolic enzyme activities in the diaphragm were, for the most part, decreased by CH and differential muscle responses were observed. Redox sensitive chymotrypsin-like proteasome activity of the diaphragm was increased and atrophy signalling was observed through decreased phospho-FOXO3a and phospho-mTOR. Phospho-p38 MAPK content was increased and this was attenuated by antioxidant treatment. Hypoxia decreased power generating capacity of the diaphragm and this was restored by N-acetyl-cysteine (NAC) but not by tempol. Redox remodelling is pivotal for diaphragm adaptation to chronic sustained hypoxia. Muscle changes are dependent on duration of the hypoxia stimulus, activity profile of the muscle, and molecular composition of the muscle. The working respiratory muscles and slow oxidative fibres are particularly susceptible. NAC (antioxidant) may be useful as an adjunct therapy in respiratory-related diseases characterised by hypoxic stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a heart-lung transplant recipient who presented with pulmonary tuberculosis (TB) 2.5 months after transplantation and then developed a paradoxical reaction after 4 months of adequate anti-TB treatment. She eventually recovered with anti-TB and high-dose steroid treatments. METHODS: Using sequential bronchoalveolar lavages, we assessed the inflammatory response in the lung and investigated the alveolar immune response against a Mycobacterium tuberculosis antigen. RESULTS: The paradoxical reaction was characterized by a massive infiltration of the alveolar space by M. tuberculosis antigen-specific CD4(+) T cells and by the presence of a CD4(-)CD8(-) T lymphocyte subpopulation bearing phenotypic markers (CD16(+)/56(+)) classically associated with NK cells. CONCLUSION: This case report illustrates that even solid organ transplant recipients receiving intense triple-drug immune suppression may be able to develop a paradoxical reaction during TB treatment. Transplant physicians should be aware of this phenomenon in order to differentiate it from treatment failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN: The inflammatory responses of primary human intervertebral disc (IVD) cells to tumor necrosis factor α (TNF-α) and an antagonist were evaluated in vitro. OBJECTIVE: To investigate an ability for soluble TNF receptor type II (sTNFRII) to antagonize TNF-α-induced inflammatory events in primary human IVD cells in vitro. SUMMARY OF BACKGROUND DATA: TNF-α is a known mediator of inflammation and pain associated with radiculopathy and IVD degeneration. sTNFRs and their analogues are of interest for the clinical treatment of these IVD pathologies, although information on the effects of sTNFR on human IVD cells remains unknown. METHODS: IVD cells were isolated from surgical tissues procured from 15 patients and cultured with or without 1.4 nmol/L TNF-α (25 ng/mL). Treatment groups were coincubated with varying doses of sTNFRII (12.5-100 nmol/L). Nitric oxide (NO), prostaglandin E₂ (PGE₂), and interleukin-6 (IL6) levels in media were quantified to characterize the inflammatory phenotype of the IVD cells. RESULTS: Across all patients, TNF-α induced large, statistically significant increases in NO, PGE₂, and IL6 secretion from IVD cells compared with controls (60-, 112-, and 4-fold increases, respectively; P < 0.0001). Coincubation of TNF-α with nanomolar doses of sTNFRII significantly attenuated the secretion of NO and PGE₂ in a dose-dependent manner, whereas IL6 levels were unchanged. Mean IC₅₀ values for NO and PGE₂ were found to be 35.1 and 20.5 nmol/L, respectively. CONCLUSION: Nanomolar concentrations of sTNFRII were able to significantly attenuate the effects of TNF-α on primary human IVD cells in vitro. These results suggest this sTNFR to be a potent TNF antagonist with potential to attenuate inflammation in IVD pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial cell (EC) seeding represents a promising approach to provide a nonthrombogenic surface on vascular grafts. In this study, we used a porcine EC/smooth muscle cell (SMC) coculture model that was previously developed to examine the efficacy of EC seeding. Expression of tissue factor (TF), a primary initiator in the coagulation cascade, and TF activity were used as indicators of thrombogenicity. Using immunostaining, primary cultures of porcine EC showed a low level of TF expression, but a highly heterogeneous distribution pattern with 14% of ECs expressing TF. Quiescent primary cultures of porcine SMCs displayed a high level of TF expression and a uniform pattern of staining. When we used a two-stage amidolytic assay, TF activity of ECs cultured alone was very low, whereas that of SMCs was high. ECs cocultured with SMCs initially showed low TF activity, but TF activity of cocultures increased significantly 7-8 days after EC seeding. The increased TF activity was not due to the activation of nuclear factor kappa-B on ECs and SMCs, as immunostaining for p65 indicated that nuclear factor kappa-B was localized in the cytoplasm in an inactive form in both ECs and SMCs. Rather, increased TF activity appeared to be due to the elevated reactive oxygen species levels and contraction of the coculture, thereby compromising the integrity of EC monolayer and exposing TF on SMCs. The incubation of cocultures with N-acetyl-cysteine (2 mM), an antioxidant, inhibited contraction, suggesting involvement of reactive oxygen species in regulating the contraction. The results obtained from this study provide useful information for understanding thrombosis in tissue-engineered vascular grafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular therapies have recently employed the use of small RNA molecules, particularly microRNAs (miRNAs), to regulate various cellular processes that may be altered in disease states. In this study, we examined the effect of transient muscle-specific miRNA inhibition on the function of three-dimensional skeletal muscle cultures, or bioartificial muscles (BAMs). Skeletal myoblast differentiation in vitro is enhanced by inhibiting a proliferation-promoting miRNA (miR-133) expressed in muscle tissues. As assessed by functional force measurements in response to electrical stimulation at frequencies ranging from 0 to 20 Hz, peak forces exhibited by BAMs with miR-133 inhibition (anti-miR-133) were on average 20% higher than the corresponding negative control, although dynamic responses to electrical stimulation in miRNA-transfected BAMs and negative controls were similar to nontransfected controls. Immunostaining for alpha-actinin and myosin also showed more distinct striations and myofiber organization in anti-miR-133 BAMs, and fiber diameters were significantly larger in these BAMs over both the nontransfected and negative controls. Compared to the negative control, anti-miR-133 BAMs exhibited more intense nuclear staining for Mef2, a key myogenic differentiation marker. To our knowledge, this study is the first to demonstrate that miRNA mediation has functional effects on tissue-engineered constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During heart development, a subpopulation of cells in the heart field maintains cardiac potential over several days of development and forms the myocardium and smooth muscle of the arterial pole. Using clonal and explant culture experiments, we show that these cells are a stem cell population that can differentiate into myocardium, smooth muscle and endothelial cells. The multipotent stem cells proliferate or differentiate into different cardiovascular cell fates through activation or inhibition of FGF and BMP signaling pathways. BMP promoted myocardial differentiation but not proliferation. FGF signaling promoted proliferation and induced smooth muscle differentiation, but inhibited myocardial differentiation. Blocking the Ras/Erk intracellular pathway promoted myocardial differentiation, while the PLCgamma and PI3K pathways regulated proliferation. In vivo, inhibition of both pathways resulted in predictable arterial pole defects. These studies suggest that myocardial differentiation of arterial pole progenitors requires BMP signaling combined with downregulation of the FGF/Ras/Erk pathway. The FGF pathway maintains the pool of proliferating stem cells and later promotes smooth muscle differentiation.