928 resultados para gradient
Resumo:
Originally from Asia, Rubus niveus has become one of the most widespread invasive plant species in the Galapagos Islands. It has invaded open vegetation, shrubland and forest alike. It forms dense thickets up to 4 m high, appearing to displace native vegetation, and threaten the integrity of several native communities. This study used correlation analysis between a R. niveus cover gradient and a number of biotic (vascular plant species richness, cover and vegetation structure) and abiotic (light and soil properties) parameters to help understand possible impacts in one of the last remaining fragments of the Scalesia forest in Santa Cruz Island, Galapagos. Higher cover of R. niveus was associated with significantly lower native species richness and cover, and a different forest structure. Results illustrated that 60% R. niveus cover could be considered a threshold for these impacts. We suggest that a maximum of 40% R. niveus cover could be a suitable management target.
Resumo:
The effect of partially replacing rolled barley (86.6% of control diet) with 20% wheat dried distillers grains plus solubles (DDGS), 40% wheat DDGS, 20% corn DDGS, or 40% corn DDGS (dietary DM basis) on rumen fluid fatty acid (FA) composition and some rumen bacterial communities was evaluated using 100 steers (20 per treatment). Wheat DDGS increased the 11t-to 10t-18:1 ratio (P < 0.05) in rumen fluid and there was evidence that the conversion of trans-18:1 to 18:0 was reduced in the control and wheat DDGS diets but not in the corn DDGS diet. Bacterial community profiles obtained using denaturing gradient gel electrophoresis and evaluated by Pearson correlation similarity matrices were not consistent for diet and, therefore, these could not be linked to different specific rumen FA. This inconsistency may be related to the nature of diets fed (dominant effect of barley), limited change in dietary composition as the result of DDGS inclusion, large animal-to-animal variation, and possibly additional stress as a result of transport just before slaughter. Ruminal densities of a key fiber-digesting bacteria specie that produces 11t-18:1 from linoleic and linolenic acids (Butyrivibrio fibrisolvens), and a lactate producer originally thought responsible for production of 10t, 12c-18:2 (Megasphaera elsdenii) were not influenced by diet (P > 0.05).
Resumo:
Dugongs (Dugong dugon) are marine mammals that obtain nutrients through hindgut fermentation of seagrass, however, the microbes responsible have not been identified. This study used denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing to profile hindgut bacterial communities in wild dugongs. Faecal samples obtained from 32 wild dugongs representing four size/maturity classes, and two captive dugongs fed on cos lettuce were screened using DGGE. Partial 16S rRNA gene profiles of hindgut bacteria from wild dugong calves and juveniles were grouped together and were different to those in subadults and adults. Marked differences between hindgut bacterial communities of wild and captive dugongs were also observed, except for a single captive whose profile resembled wild adults following an unsuccessful reintroduction to the wild. Pyrosequencing of hindgut communities in two wild dugongs confirmed the stability of bacterial populations, and Firmicutes (average 75.6% of Operational Taxonomic Units [OTUs]) and Bacteroidetes (19.9% of OTUs) dominated. Dominant genera were Roseburia, Clostridium, and Bacteroides. Hindgut microbial composition and diversity in wild dugongs is affected by ontogeny and probably diet. In captive dugongs, the absence of the dominant bacterial DNA bands identified in wild dugongs is probably dependent upon prevailing diet and other captive conditions such as the use of antibiotics. This study represents a first step in the characterisation of a novel microbial ecosystem-the marine hindgut of Sirenia.
Resumo:
Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such ofalse-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.
Resumo:
Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.
Resumo:
The particles of Potato virus A (PVA; genus Potyvirus) are helically constructed filaments that contain multiple copies of a single type of coat-protein (CP) subunit and a single copy of genome-linked protein (VPg), attached to one end of the virion. Examination of negatively-stained virions by electron microscopy revealed flexuous, rod-shaped particles with no obvious terminal structures. It is known that particles of several filamentous plant viruses incorporate additional minor protein components, forming stable complexes that mediate particle disassembly, movement or transmission by insect vectors. The first objective of this work was to study the interaction of PVA movement-associated proteins with virus particles and how these interactions contribute to the morphology and function of the virus particles. Purified particles of PVA were examined by atomic force microscopy (AFM) and immuno-gold electron microscopy. A protrusion was found at one end of some of the potyvirus particles, associated with the 5' end of the viral RNA. The tip contained two virus-encoded proteins, the genome-linked protein (VPg) and the helper-component proteinase (HC-Pro). Both are required for cell-to-cell movement of the virus. Biochemical and electron microscopy studies of purified PVA samples also revealed the presence of another protein required for cell-to-cell movement the cylindrical inclusion protein (CI), which is also an RNA helicase/ATPase. Centrifugation through a 5-40% sucrose gradient separated virus particles with no detectable CI to a fraction that remained in the gradient, from the CI-associated particles that went to the pellet. Both types of particles were infectious. AFM and translation experiments demonstrated that when the viral CI was not present in the sample, PVA virions had a beads-on-a-string phenotype, and RNA within the virus particles was more accessible to translation. The second objective of this work was to study phosphorylation of PVA movement-associated and structural proteins (CP and VPg) in vitro and, if possible, in vivo. PVA virion structural protein CP is necessary for virus cell-to-cell movement. The tobacco protein kinase CK2 was identified as a kinase phosphorylating PVA CP. A major site of CK2 phosphorylation in PVA CP was identified as a single threonine within a CK2 consensus sequence. Amino acid substitutions affecting the CK2 consensus sequence in CP resulted in viruses that were defective in cell-to-cell and long-distance movement. The CK2 regulation of virion assembly and cell-to-cell movement by phosphorylation of CP was possibly due to the inhibition of CP binding to viral RNA. Four putative phosphorylation sites were identified from an in vitro phosphorylated recombinant VPg. All four were mutated and the spread of mutant viruses in two different host plants was studied. Two putative phosphorylation site mutants (Thr45 and Thr49) had phenotypes identical to that of a wild type (WT) virus infection in both Nicotiana benthamiana and N. tabacum plants. The other two mutant viruses (Thr132/Ser133 and Thr168) showed different phenotypes with increased or decreased accumulation rates, respectively, in inoculated and the first two systemically infected leaves of N. benthamiana. The same mutants were occasionally restricted to single cells in N. tabacum plants, suggesting the importance of these amino acids in the PVA infection cycle in N. tabacum.
Resumo:
Experimental results are presented on the lateral growth of turbulent spots in a series of flows with favorable pressure gradients. It is shown that the wedge angle increases slowly with the Reynolds number and that a favorable pressure gradient inhibits the growth of turbulent spots and, in general, results in a nonlinear turbulent wedge. As soon as the pressure gradient decreases to the point where the flow becomes supercritical, however, spot growth increases rapidly and the associated turbulent wedge becomes linear.
Resumo:
Currently, the classification used for cyanobacteria is based mainly on morphology. In many cases the classification is known to be incongruent with the phylogeny of cyanobacteria. The evaluation of this classification is complicated by the fact that numerous strains are only described morphologically and have not been isolated. Moreover, the phenotype of many cyanobacterial strains alters during prolonged laboratory cultivation. In this thesis, cyanobacterial strains were isolated from lakes (mainly Lake Tuusulanjärvi) and both morphology and phylogeny of the isolates were investigated. The cyanobacterial community composition in Lake Tuusulanjärvi was followed for two years in order to relate the success of cyanobacterial phenotypes and genotypes to environmental conditions. In addition, molecular biological methods were compared with traditional microscopic enumeration and their ability and usefulness in describing the cyanobacterial diversity was evaluated. The Anabaena, Aphanizomenon, and Trichormus strains were genetically heterogeneous and polyphyletic. The phylogenetic relationships of the heterocytous cyanobacteria were not congruent with their classification. In contrast to heterocytous cyanobacteria, the phylogenetic relationships of the Snowella and Woronichinia strains, which had not been studied before this thesis, reflected the morphology of strains and followed their current classification. The Snowella strains formed a monophyletic cluster, which was most closely related to the Woronichinia strain. In addition, a new cluster of thin, filamentous cyanobacterial strains identified as Limnothrix redekei was revealed. This cluster was not closely related to any other known cyanobacteria. The cyanobacterial community composition in Lake Tuusulanjärvi was studied with molecular methods [denaturant gradient gel electrophoresis (DGGE) and cloning of the 16S rRNA gene], through enumerations of cyanobacteria under microscope, and by strain isolations. Microcystis, Anabaena/Aphanizomenon, and Synechococcus were the major groups in the cyanobacterial community in Lake Tuusulanjärvi during the two-year monitoring period. These groups showed seasonal succession, and their success was related to different environmental conditions. The major groups of the cyanobacterial community were detected by all used methods. However, cloning gave higher estimates than microscopy for the proportions of heterocytous cyanobacteria and Synechococcus. The differences were probably caused by the high 16S rRNA gene copy numbers in heterotrophic cyanobacteria and by problems in the identification and detection of unicellular cyanobacteria.
Resumo:
The mean flow development in an initially turbulent boundary layer subjected to a large favourable pressure gradient beginning at a point x0 is examined through analyses expected a priori to be valid on either side of relaminarization. The ‘quasi-laminar’ flow in the later stages of reversion, where the Reynolds stresses have by definition no significant effect on the mean flow, is described by an asymptotic theory constructed for large values of a pressure-gradient parameter Λ, scaled on a characteristic Reynolds stress gradient. The limiting flow consists of an inner laminar boundary layer and a matching inviscid (but rotational) outer layer. There is consequently no entrainment to lowest order in Λ−1, and the boundary layer thins down to conserve outer vorticity. In fact, the predictions of the theory for the common measures of boundary-layer thickness are in excellent agreement with experimental results, almost all the way from x0. On the other hand the development of wall parameters like the skin friction suggests the presence of a short bubble-shaped reverse-transitional region on the wall, where neither turbulent nor quasi-laminar calculations are valid. The random velocity fluctuations inherited from the original turbulence decay with distance, in the inner layer, according to inverse-power laws characteristic of quasi-steady perturbations on a laminar flow. In the outer layer, there is evidence that the dominant physical mechanism is a rapid distortion of the turbulence, with viscous and inertia forces playing a secondary role. All the observations available suggest that final retransition to turbulence quickly follows the onset of instability in the inner layer.It is concluded that reversion in highly accelerated flows is essentially due to domination of pressure forces over the slowly responding Reynolds stresses in an originally turbulent flow, accompanied by the generation of a new laminar boundary layer stabilized by the favourable pressure gradient.
Resumo:
This study aimed to unravel the effects of climate, topography, soil, and grazing management on soil organic carbon (SOC) stocks in the grazing lands of north-eastern Australia. We sampled for SOC stocks at 98 sites from 18 grazing properties across Queensland, Australia. These samples covered four nominal grazing management classes (Continuous, Rotational, Cell, and Exclosure), eight broad soil types, and a strong tropical to subtropical climatic gradient. Temperature and vapour-pressure deficit explained >80% of the variability of SOC stocks at cumulative equivalent mineral masses nominally representing 0-0.1 and 0-0.3m depths. Once detrended of climatic effects, SOC stocks were strongly influenced by total standing dry matter, soil type, and the dominant grass species. At 0-0.3m depth only, there was a weak negative association between stocking rate and climate-detrended SOC stocks, and Cell grazing was associated with smaller SOC stocks than Continuous grazing and Exclosure. In future, collection of quantitative information on stocking intensity, frequency, and duration may help to improve understanding of the effect of grazing management on SOC stocks. Further exploration of the links between grazing management and above- and below-ground biomass, perhaps inferred through remote sensing and/or simulation modelling, may assist large-area mapping of SOC stocks in northern Australia. © CSIRO 2013.
Resumo:
This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.
Resumo:
Solitary waves have been found in an adiabatic compressible atmosphere which, in ambient state, has winds and temperature gradient, generalizing our earlier results for the isothermal atmosphere. Explicit results are obtained for the special case of linear temperature and linear wind distributions in the undisturbed conditions. An important result of the study is that the number of possible critical speeds of the flow depends crucially on whether the maximum Richardson number (which is variable in the present example) is greater or less than 1/4.
Resumo:
Abstract Biochar has significant potential to improve crop performance. This study examined the effect of biochar application on the photosynthesis and yield of peanut crop grown on two soil types. The commercial peanut cultivar Middleton was grown on red ferrosol and redoxi-hydrosol (Queensland, Australia) amended with a peanut shell biochar gradient (0, 0.375, 0.750, 1.50, 3.00 and 6.00 %, w/w, equivalent up to 85 t ha−1) in a glasshouse pot experiment. Biomass and pod yield, photosynthesis-[CO2] response parameters, leaf characteristics and soil properties (carbon, nitrogen (N) and nutrients) were quantified. Biochar significantly improved peanut biomass and pod yield up to 2- and 3-folds respectively in red ferrosol and redoxi-hydrosol. A modest (but significant) biochar-induced improvement of the maximumelectron transport rate and saturating photosynthetic rate was observed for red ferrosol. This response was correlated to increased leaf N and accompanied with improved soil available N and biological N fixation. Biochar application also improved the availability of other soil nutrients, which appeared critical in improving peanut performance, especially on infertile redoxihydrosol. Our study suggests that application of peanut shell derived biochar has strong potential to improve peanut yield on red ferrosol and redoxi-hydrosol. Biochar soil amendment can affect leaf N status and photosynthesis, but the effect varied with soil type.
Resumo:
Multi- and intralake datasets of fossil midge assemblages in surface sediments of small shallow lakes in Finland were studied to determine the most important environmental factors explaining trends in midge distribution and abundance. The aim was to develop palaeoenvironmental calibration models for the most important environmental variables for the purpose of reconstructing past environmental conditions. The developed models were applied to three high-resolution fossil midge stratigraphies from southern and eastern Finland to interpret environmental variability over the past 2000 years, with special focus on the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and recent anthropogenic changes. The midge-based results were compared with physical properties of the sediment, historical evidence and environmental reconstructions based on diatoms (Bacillariophyta), cladocerans (Crustacea: Cladocera) and tree rings. The results showed that the most important environmental factor controlling midge distribution and abundance along a latitudinal gradient in Finland was the mean July air temperature (TJul). However, when the dataset was environmentally screened to include only pristine lakes, water depth at the sampling site became more important. Furthermore, when the dataset was geographically scaled to southern Finland, hypolimnetic oxygen conditions became the dominant environmental factor. The results from an intralake dataset from eastern Finland showed that the most important environmental factors controlling midge distribution within a lake basin were river contribution, water depth and submerged vegetation patterns. In addition, the results of the intralake dataset showed that the fossil midge assemblages represent fauna that lived in close proximity to the sampling sites, thus enabling the exploration of within-lake gradients in midge assemblages. Importantly, this within-lake heterogeneity in midge assemblages may have effects on midge-based temperature estimations, because samples taken from the deepest point of a lake basin may infer considerably colder temperatures than expected, as shown by the present test results. Therefore, it is suggested here that the samples in fossil midge studies involving shallow boreal lakes should be taken from the sublittoral, where the assemblages are most representative of the whole lake fauna. Transfer functions between midge assemblages and the environmental forcing factors that were significantly related with the assemblages, including mean air TJul, water depth, hypolimnetic oxygen, stream flow and distance to littoral vegetation, were developed using weighted averaging (WA) and weighted averaging-partial least squares (WA-PLS) techniques, which outperformed all the other tested numerical approaches. Application of the models in downcore studies showed mostly consistent trends. Based on the present results, which agreed with previous studies and historical evidence, the Medieval Climate Anomaly between ca. 800 and 1300 AD in eastern Finland was characterized by warm temperature conditions and dry summers, but probably humid winters. The Little Ice Age (LIA) prevailed in southern Finland from ca. 1550 to 1850 AD, with the coldest conditions occurring at ca. 1700 AD, whereas in eastern Finland the cold conditions prevailed over a longer time period, from ca. 1300 until 1900 AD. The recent climatic warming was clearly represented in all of the temperature reconstructions. In the terms of long-term climatology, the present results provide support for the concept that the North Atlantic Oscillation (NAO) index has a positive correlation with winter precipitation and annual temperature and a negative correlation with summer precipitation in eastern Finland. In general, the results indicate a relatively warm climate with dry summers but snowy winters during the MCA and a cool climate with rainy summers and dry winters during the LIA. The results of the present reconstructions and the forthcoming applications of the models can be used in assessments of long-term environmental dynamics to refine the understanding of past environmental reference conditions and natural variability required by environmental scientists, ecologists and policy makers to make decisions concerning the presently occurring global, regional and local changes. The developed midge-based models for temperature, hypolimnetic oxygen, water depth, littoral vegetation shift and stream flow, presented in this thesis, are open for scientific use on request.
Resumo:
This study brings new insights into the magmatic evolution of natural F-enriched peraluminous granitic systems. The Artjärvi, Sääskjärvi and Kymi granite stocks within the 1.64 Ga Wiborg rapakivi granite batholith have been investigated by petrographic, geochemical, experimental and melt inclusion methods. These stocks represent late-stage leucocratic and weakly peraluminous intrusive phases typical of rapakivi granites worldwide. The Artjärvi and Sääskjärvi stocks are multiphase intrusions in which the most evolved phase is topaz granite. The Kymi stock contains topaz throughout and has a well-developed zoned structure, from the rim to the center: stockscheider pegmatite equigranular topaz granite porphyritic topaz granite. Geochemically the topaz granites are enriched in F, Li, Be, Ga, Rb, Sn and Nb and depleted in Mg, Fe, Ti, Ba, Sr, Zr and Eu. The anomalous geochemistry and mineralogy of the topaz granites are essentially magmatic in origin; postmagmatic reactions have only slightly modified the compositions. The Kymi equigranular topaz granite shows the most evolved character, and the topaz granites at Artjärvi and Sääskjärvi resemble the less evolved porphyritic topaz granite of the Kymi stock. Stockscheiders are found at the roof contacts of the Artjärvi and Kymi stocks. The stockscheider at Artjärvi is composed of biotite-rich schlieren and pegmatite layers parallel to the contact. The schlieren layering is considered to have formed by velocity-gradient sorting mechanism parallel to the flow, which led to the accumulation of mafic minerals along the upper contact of the topaz granite. Cooling and contraction of the topaz granite formed fractures parallel to the roof contact and residual pegmatite magmas were injected along the fractures and formed the pegmatite layers. The zoned structure of the Kymi stock is the result of intrusion of highly evolved residual melt from deeper parts of the magma chamber along the fractured contact between the porphyritic granite crystal mush and country rock. The equigranular topaz granite and marginal pegmatite (stockscheider) crystallized from this evolved melt. Phase relations of the Kymi equigranular topaz granite have been investigated utilizing crystallization experiments at 100 to 500 MPa as a function of water activity and F content. Fluorite and topaz can crystallize as liquidus phases in F-rich peraluminous systems, but the F content of the melt should exceed 2.5 - 3.0 wt % to facilitate crystallization of topaz. In peraluminous F-bearing melts containing more than 1 wt % F, topaz and muscovite are expected to be the first F-bearing phases to crystallize at high pressure, whereas fluorite and topaz should crystallize first at low pressure. Overall, the saturation of fluorite and topaz follows the reaction: CaAl2Si2O8 (plagioclase) + 2[AlF3]melt = CaF2 (fluorite) + 2Al2SiO4F2 (topaz). The obtained partition coefficient for F between biotite and glass D(F)Bt/glass is 1.89 to 0.80 (average 1.29) and can be used as an empirical fluormeter to determine the F content of coexisting melts. In order to study the magmatic evolution of the Kymi stock, crystallized melt inclusions in quartz and topaz grains in the porphyritic and the equigranular topaz granites and the marginal pegmatite were rehomogenized and analyzed. The homogenization conditions for the melt inclusions from the granites were 700 °C, 300 MPa, and 24 h, and for melt inclusions from the pegmatite, 700 °C, 100 MPa, and 24/96 h. The majority of the melt inclusions is chemically similar to the bulk rocks (excluding H2O content), but a few melt inclusions in the equigranular granite show clearly higher F and low K2O contents (on average 11.6 wt % F, 0.65 wt % K2O). The melt inclusion compositions indicate coexistence of two melt fractions, a prevailing peraluminous and a very volatile-rich, possibly peralkaline. Combined petrological, experimental and melt inclusion studies of the Kymi equigranular topaz granite indicate that plagioclase was the liquidus phase at nearly water-saturated (fluid-saturated) conditions and that the F content of the melt was at least 2 wt %. The early crystallization of biotite and the presence of muscovite in crystallization experiments at 200 MPa contrasts with the late-stage crystallization of biotite and the absence of muscovite in the equigranular granite, indicating that crystallization pressure may have been lower than 200 MPa for the granite.