989 resultados para glacier melting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wurmian Glaciation of the Alpine Foreland has been reconstructed in different phases as a result of investigations in the Rhine-Bodan region as well as in the Linth area. The whole High Glacial is divided in four main phases: ice advance into the piedmont basins, building-up of the foreland glaciation, high stages and retreat into the inner Alps. This epoch took up perhaps less than 12,000 years. During the period of building, an average increase of ice thickness of about 12 cm per year was sufficient to form an extensive foreland glacier within 5000-7000 years. The snow lines of the stades of the piedmont glaciation as well as of the local glaciers are calculated. Snow lines at about 1500 m a.s.l. led to an inner alpine ice build-up and an advance of glaciers towards the piedmont basins. To produce the foreland ice sheet, low snow lines of 900-1000 m a.s.l. were necessary. An interstadial phase before the maximum glaciation is evidenced by sediment sequences and a 14C-date of 22,100 BP. The chronology of ice retreat after 18 ka BP is still uncertain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography for an area that roughly coincides with the Antarctic continental shelf. Locations of the merging line have been carefully adjusted in order to get the best out of each data set. High-resolution gridded data for upper and lower ice surface topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier have been carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and again carefully merged into the existing bathymetry map. The global 1-minute dataset (RTopo-1 Version 1.0.5) has been split into two netCDF files. The first contains digital maps for global bedrock topography, ice bottom topography, and surface elevation. The second contains the auxiliary maps for data sources and the surface type mask. A regional subset that covers all variables for the region south of 50 deg S is also available in netCDF format. Datasets for the locations of grounding and coast lines are provided in ASCII format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Little Ice Age (LIA) is one of the most prominent climate shifts in the past 5000 yrs. It has been suggested that the LIA might be the most recent of the Dansgaard-Oeschger events, which are better known as abrupt, large scale climate oscillations during the last glacial period. If the case, then according to Broecker (2000a, 2000b) Antarctica should have warmed during the LIA, when the Northern Hemisphere was cold. Here we present new data from the Ross Sea, Antarctica, that indicates surface temperatures were ~2 °C colder during the LIA, with colder sea surface temperatures in the Southern Ocean and/or increased sea-ice extent, stronger katabatic winds, and decreased snow accumulation. Whilst we find there was large spatial and temporal variability, overall Antarctica was cooler and stormier during the LIA. Although temperatures have warmed since the termination of the LIA, atmospheric circulation strength has remained at the same, elevated level. We conclude, that the LIA was either caused by alternative forcings, or that the sea-saw mechanism operates differently during warm periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last 50 years, the Antarctic Peninsula has experienced rapid warming with associated retreat of 87% of marine and tidewater glacier fronts. Accelerated glacial retreat and iceberg calving may have a significant impact on the freshwater and nutrient supply to the phytoplankton communities of the highly productive coastal regions. However, commonly used biogenic carbonate proxies for nutrient and salinity conditions are not preserved in sediments from coastal Antarctica. Here we describe a method for the measurement of zinc to silicon ratios in diatom opal, (Zn/Si)opal, which is a potential archive in Antarctic marine sediments. A core top calibration from the West Antarctic Peninsula shows (Zn/Si)opal is a proxy for mixed layer salinity. We present down-core (Zn/Si)opal paleosalinity records from two rapidly accumulating sites taken from nearshore environments off the West Antarctic Peninsula which show an increase in meltwater input in recent decades. Our records show that the recent melting in this region is unprecedented for over 120 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor–relief landforms as wind, weather, water and vegetation impacts on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper draws on some of the preliminary findings of a small pilot study which aimed to discover what evidentiary challenges a range of practitioners with experience of different international trials faced in the cases they were involved in, and what practices were developed to deal with these challenges. The findings in this study are based on the data collected from The Hague-based institutions, the ICC, the ICTY, the ICTY and ICTR Appeals Chamber, and the Special Tribunal for the Lebanon (STL). It is argued that professionals moving from institution to institution are engaged in a process of cross-pollination which itself influences the practices that develop, although a common understanding of certain evidentiary issues in international trials remains fragmented and at times elusive.