907 resultados para geographical distribution
Resumo:
The effect of an ordered array of nanocones on a conducting substrate immersed in the plasma on the transport of the plasma ions is investigated. The real conical shape of the cones is rigorously incorporated into the model. The movement of 10^5 CH3+ ions in the plasma sheath modified by the nanocone array is simulated. The ions are driven by the electric fields produced by the sheath and the nanostructures. The surface charge density and the total charge on the nanotips with different aspect ratios are computed. The ion transport simulation provides important characteristics of the displacement and velocity of the ions. The relative ion distribution along the lateral surfaces of the carbon nanotips is computed as well. It is shown that a rigorous account of the realistic nanostructure shape leads to very different distribution of the ion fluxes on the nanostructured surfaces compared to the previously reported works. The ion flux distribution is a critical factor in the nucleation process on the substrate and determines the nanostructure growth patterns.
Resumo:
The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.
Resumo:
Multiscale, multiphase numerical modeling is used to explain the mechanisms of effective control of chirality distributions of single-walled carbon nanotubes in direct plasma growth and suggest effective approaches to further improvement. The model includes an unprecedented combination of the plasma sheath, ion/radical transport, species creation/loss, plasma–surface interaction, heat transfer, surface/bulk diffusion, graphene layer nucleation, and bending/lift-off modules. It is shown that the constructive interplay between the plasma and the Gibbs–Thomson effect can lead to the effective nucleation and lift-off of small graphene layers on small metal catalyst nanoparticles. As a result, much thinner nanotubes with narrower chirality distributions can nucleate at much lower process temperatures and pressures compared to thermal CVD. This approach is validated by a host of experimental results, substantially reduces the amounts of energy and atomic matter required for the nanotube growth, and can be extended to other nanoscale structures and materials systems, thereby nearing the ultimate goal of energy- and matter-efficient nanotechnology.
Resumo:
Large-scale (∼109 atoms) numerical simulations reveal that plasma-controlled dynamic delivery and redistribution of carbon atoms between the substrate and nanotube surfaces enable the growth of ultralong single walled carbon nanotubes (SWCNTs) and explain the common experimental observation of slower growth at advanced stages. It is shown that the plasma-based processes feature up to two orders of magnitude higher growth rates than equivalent neutral-gas systems and are better suited for the SWCNT synthesis at low nanodevice friendly temperatures. © 2008 American Institute of Physics.
Resumo:
Using Monte Carlo simulation technique, we have calculated the distribution of ion current extracted from low-temperature plasmas and deposited onto the substrate covered with a nanotube array. We have shown that a free-standing carbon nanotube is enclosed in a circular bead of the ion current, whereas in square and hexagonal nanotube patterns, the ion current is mainly concentrated along the lines connecting the nearest nanotubes. In a very dense array (with the distance between nanotubes/nanotube-height ratio less than 0.05), the ions do not penetrate to the substrate surface and deposit on side surfaces of the nanotubes.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.
Resumo:
Angular distribution of microscopic ion fluxes around nanotubes arranged into a dense ordered pattern on the surface of the substrate is studied by means of multiscale numerical simulation. The Monte Carlo technique was used to show that the ion current density is distributed nonuniformly around the carbon nanotubes arranged into a dense rectangular array. The nonuniformity factor of the ion current flux reaches 7 in dense (5× 1018 m-3) plasmas for a nanotube radius of 25 nm, and tends to 1 at plasma densities below 1× 1017 m-3. The results obtained suggest that the local density of carbon adatoms on the nanotube side surface, at areas facing the adjacent nanotubes of the pattern, can be high enough to lead to the additional wall formation and thus cause the single- to multiwall structural transition, and other as yet unexplained nanoscience phenomena.
Resumo:
The distribution of flux of carbon-bearing cations over nanopatterned surfaces with conductive nanotips and nonconductive nanoislands is simulated using the Monte-Carlo technique. It is shown that the ion current is focused to nanotip surfaces when the negative substrate bias is low and only slightly perturbed at higher substrate biases. In the low-bias case, the mean horizontal ion displacement caused by the nanotip electric field exceeds 10 nm. However, at higher substrate biases, this value reduces down to 2 nm. In the nonconductive nanopattern case, the ion current distribution is highly nonuniform, with distinctive zones of depleted current density around the nanoislands. The simulation results suggest the efficient means to control ion fluxes in plasma-aided nanofabrication of ordered nanopatterns, such as nanotip microemitter structures and quantum dot or nanoparticle arrays. © World Scientific Publishing Company.
Resumo:
Texture information in the iris image is not uniform in discriminatory information content for biometric identity verification. The bits in an iris code obtained from the image differ in their consistency from one sample to another for the same identity. In this work, errors in bit strings are systematically analysed in order to investigate the effect of light-induced and drug-induced pupil dilation and constriction on the consistency of iris texture information. The statistics of bit errors are computed for client and impostor distributions as functions of radius and angle. Under normal conditions, a V-shaped radial trend of decreasing bit errors towards the central region of the iris is obtained for client matching, and it is observed that the distribution of errors as a function of angle is uniform. When iris images are affected by pupil dilation or constriction the radial distribution of bit errors is altered. A decreasing trend from the pupil outwards is observed for constriction, whereas a more uniform trend is observed for dilation. The main increase in bit errors occurs closer to the pupil in both cases.
Resumo:
The effect of density and size of dust grains on the electron energy distribution function (EEDF) in low-temperature complex plasmas is studied. It is found that the EEDF depends strongly on the dust density and size. The behavior of the electron temperature can differ significantly from that of a pristine plasma. For low-pressure argon glow discharge, the Druyvesteyn-like EEDF often found in pristine plasmas can become nearly Maxwellian if the dust density and/or sizes are large. One can thus control the plasma parameters by the dust grains.
Resumo:
Using a case study approach, this paper presents a robust methodology for assessing the compatibility of stormwater treatment performance data between two geographical regions in relation to a treatment system. The desktop analysis compared data derived from a field study undertaken in Florida, USA, with South East Queensland (SEQ) rainfall and pollutant characteristics. The analysis was based on the hypothesis that when transposing treatment performance information from one geographical region to another, detailed assessment of specific rainfall and stormwater quality parameters is required. Accordingly, characteristics of measured rainfall events and stormwater quality in the Florida study were compared with typical characteristics for SEQ. Rainfall events monitored in the Florida study were found to be similar to events that occur in SEQ in terms of their primary characteristics of depth, duration and intensity. Similarities in total suspended solids (TSS) and total nitrogen (TN) concentration ranges for Florida and SEQ suggest that TSS and TN removal performances would not be very different if the treatment system is installed in SEQ. However, further investigations are needed to evaluate the treatment performance of total phosphorus (TP). The methodology presented also allows comparison of other water quality parameters.
Resumo:
Large number of rooftop Photovoltaics (PVs) have turned traditional passive networks into active networks with intermittent and bidirectional power flow. A community based distribution network grid reinforcement process is proposed to address technical challenges associated with large integration of rooftop PVs. Probabilistic estimation of intermittent PV generation is considered. Depending on the network parameters such as the R/X ratio of distribution feeder, either reactive control from PVs or coordinated control of PVs and Battery Energy Storage (BES) has been proposed. Determination of BES capacity is one of the significant outcomes from the proposed method and several factors such as variation in PV installed capacity as well as participation from community members are analyzed. The proposed approach is convenient for the community members providing them flexibility of managing their integrated PV and BES systems
Resumo:
It is often said that Australia is a world leader in rates of copyright infringement for entertainment goods. In 2012, the hit television show, Game of Thrones, was the most downloaded television show over bitorrent, and estimates suggest that Australians accounted for a plurality of nearly 10% of the 3-4 million downloads each week. The season finale of 2013 was downloaded over a million times within 24 hours of its release, and again Australians were the largest block of illicit downloaders over BitTorrent, despite our relatively small population. This trend has led the former US Ambassador to Australia to implore Australians to stop 'stealing' digital content, and rightsholders to push for increasing sanctions on copyright infringers. The Australian Government is looking to respond by requiring Internet Service Providers to issue warnings and potentially punish consumers who are alleged by industry groups to have infringed copyright. This is the logical next step in deterring infringement, given that the operators of infringing networks (like The Pirate Bay, for example) are out of regulatory reach. This steady ratcheting up of the strength of copyright, however, comes at a significant cost to user privacy and autonomy, and while the decentralisation of enforcement reduces costs, it also reduces the due process safeguards provided by the judicial process. This article presents qualitative evidence that substantiates a common intuition: one of the major reasons that Australians seek out illicit downloads of content like Game of Thrones in such numbers is that it is more difficult to access legitimately in Australia. The geographically segmented way in which copyright is exploited at an international level has given rise to a ‘tyranny of digital distance’, where Australians have less access to copyright goods than consumers in other countries. Compared to consumers in the US and the EU, Australians pay more for digital goods, have less choice in distribution channels, are exposed to substantial delays in access, and are sometimes denied access completely. In this article we focus our analysis on premium film and television offerings, like Game of Thrones, and through semi-structured interviews, explore how choices in distribution impact on the willingness of Australian consumers to seek out infringing copies of copyright material. Game of Thrones provides an excellent case study through which to frame this analysis: it is both one of the least legally accessible television offerings and one of the most downloaded through filesharing networks of recent times. Our analysis shows that at the same time as rightsholder groups, particularly in the film and television industries, are lobbying for stronger laws to counter illicit distribution, the business practices of their member organisations are counter-productively increasing incentives for consumers to infringe. The lack of accessibility and high prices of copyright goods in Australia leads to substantial economic waste. The unmet consumer demand means that Australian consumers are harmed by lower access to information and entertainment goods than consumers in other jurisdictions. The higher rates of infringement that fulfils some of this unmet demand increases enforcement costs for copyright owners and imposes burdens either on our judicial system or on private entities – like ISPs – who may be tasked with enforcing the rights of third parties. Most worryingly, the lack of convenient and cheap legitimate digital distribution channels risks undermining public support for copyright law. Our research shows that consumers blame rightsholders for failing to meet market demand, and this encourages a social norm that infringing copyright, while illegal, is not morally wrongful. The implications are as simple as they are profound: Australia should not take steps to increase the strength of copyright law at this time. The interests of the public and those of rightsholders align better when there is effective competition in distribution channels and consumers can legitimately get access to content. While foreign rightsholders are seeking enhanced protection for their interests, increasing enforcement is likely to increase their ability to engage in lucrative geographical price-discrimination, particularly for premium content. This is only likely to increase the degree to which Australian consumers feel that their interests are not being met and, consequently, to further undermine the legitimacy of copyright law. If consumers are to respect copyright law, increasing sanctions for infringement without enhancing access and competition in legitimate distribution channels could be dangerously counter-productive. We suggest that rightsholders’ best strategy for addressing infringement in Australia at this time is to ensure that Australians can access copyright goods in a timely, affordable, convenient, and fair lawful manner.
Resumo:
Genetically diverse RNA viruses like dengue viruses (DENVs)segregate into multiple, genetically distinct, lineages that temporally arise and disappear on a regular basis. Lineage turnover may occur through multiple processes such as, stochastic or due to variations in fitness. To determine the variation of fitness, we measured the distribution of fitness within DENV populations and correlated it with lineage extinction and replacement. The fitness of most members within a population proved lower than the aggregate fitness of populations from which they were drawn, but lineage replacement events were not associated with changes in the distribution of fitness. These data provide insights into variations in fitness of DENV populations, extending our understanding of the complexity between members of individual populations.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.