955 resultados para genetics and DNA sequencing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hepatitis B virus genome encodes a protein, termed HBx, that is widely recognized as a transcriptional transactivator. While HBx does not directly bind cis-acting transcriptional control elements, it has been shown to associate with cellular proteins that bind DNA. Because HBx transactivated a large number of viral/cellular transcriptional control elements, we looked for its targets within the components of the basal transcriptional machinery. This search led to the identification of its interactions with TFIIH. Here, we show that HBx interacts with yeast and mammalian TFIIH complexes both in vitro and in vivo. These interactions between HBx and the components of TFIIH are supported by several lines of evidence including results from immunoprocedures and direct methods of measuring interactions. We have identified ERCC3 and ERCC2 DNA helicase subunits of holoenzyme TFIIH as targets of HBx interactions. Furthermore, the DNA helicase activity of purified TFIIH from rat liver and, individually, the ERCC2 component of TFIIH is stimulated in the presence of HBx. These observations suggest a role for HBx in transcription and DNA repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA topoisomerase II is a nuclear enzyme essential for chromosome dynamics and DNA metabolism. In mammalian cells, two genetically and biochemically distinct topoisomerase II forms exist, which are designated topoisomerase II alpha and topoisomerase II beta. In our studies of human topoisomerase II, we have found that a substantial fraction of the enzyme exists as alpha/beta heterodimers in HeLa cells. The ability to form heterodimers was verified when human topoisomerases II alpha and II beta were coexpressed in yeast and investigated in a dimerization assay. Analysis of purified heterodimers shows that these enzymes maintain topoisomerase II specific catalytic activities. The natural existence of an active heterodimeric subclass of topoisomerase II merits attention whenever topoisomerases II alpha and II beta function, localization, and cell cycle regulation are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of Matsumoto and Ohta [Matsumoto, K. & Ohta, T. (1992) Chromosoma 102, 60-65; Matsumoto, K. & Ohta, T. (1995) Mutat. Res. 326, 93-98] to induce large numbers of endoreduplicated Chinese hamster ovary cells has now been coupled with the fluorescence-plus-Giemsa method of Perry and Wolff [Perry, P. & Wolff, S. (1974) Nature (London) 251, 156-158] to produce harlequin endoreduplicated chromosomes that after the third round of DNA replication are composed of a chromosome with a light chromatid and a dark chromatid in close apposition to its sister chromosome containing two light chromatids. Unless the pattern is disrupted by sister chromatid exchange (SCE), the dark chromatid is always in the center, so that the order of the chromatids is light-dark light-light. The advent of this method, which permits the observation of SCEs in endoreduplicated cells, makes it possible to determine with great ease in which cell cycle an SCE occurred. This now allows us to approach several vexing questions about the induction of SCEs (genetic damage and its repair) after exposure to various types of mutagenic carcinogens. The present experiments have allowed us to observe how many cell cycles various types of lesions that are induced in DNA by a crosslinking agent, an alkylating agent, or ionizing radiation, and that are responsible for the induction of SCEs, persist before being repaired and thus lose their ability to inflict genetic damage. Other experiments with various types of mutagenic carcinogens and various types of cell lines that have defects in different DNA repair processes, such as mismatch repair, excision repair, crosslink repair, and DNA-strand-break repair, can now be carried out to determine the role of these types of repair in removing specific types of lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between increased DNA-methyltransferase (DNA-MTase) activity and tumor development suggest a fundamental role for this enzyme in the initiation and progression of cancer. A true functional role for DNA-MTase in the neoplastic process would be further substantiated if the target cells affected by the initiating carcinogen exhibit changes in enzyme activity. This hypothesis was addressed by examining DNA-MTase activity in alveolar type II (target) and Clara (nontarget) cells from A/J and C3H mice that exhibit high and low susceptibility, respectively, for lung tumor formation. Increased DNA-MTase activity was found only in the target alveolar type II cells of the susceptible A/J mouse and caused a marked increase in overall DNA methylation in these cells. Both DNA-MTase and DNA methylation changes were detected 7 days after carcinogen exposure and, thus, were early events in neoplastic evolution. Increased gene expression was also detected by RNA in situ hybridization in hypertrophic alveolar type II cells of carcinogen-treated A/J mice, indicating that elevated levels of expression may be a biomarker for premalignancy. Enzyme activity increased incrementally during lung cancer progression and coincided with increased expression of the DNA-MTase activity are strongly associated with neoplastic development and constitute a key step in carcinogenesis. The detection of premalignant lung disease through increased DNA-MTase expression and the possibility of blocking the deleterious effects of this change with specific inhibitors will offer new intervention strategies for lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a cell-free system for UV mutagenesis, we have previously demonstrated the existence of a mutagenic pathway associated with nucleotide-excision repair gaps. Here, we report that this pathway can be reconstituted by using six purified proteins: UvrA, UvrB, UvrC, DNA helicase II, DNA polymerase III core, and DNA ligase. This establishes the minimal requirements for repair-gap UV mutagenesis. DNA polymerase II could replace DNA polymerase III, although less effectively, whereas DNA polymerase I, the major repair polymerase, could not. DNA sequence analysis of mutations generated in the in vitro reaction revealed a spectrum typical of mutations targeted to UV lesions. These observations suggest that repair-gap UV mutagenesis is performed by DNA polymerase III, and to a lesser extent by DNA polymerase II, by filling-in of a rare class of excision gaps that contain UV lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strategy of "sequence scanning" is proposed for rapid acquisition of sequence from clones such as bacteriophage P1 clones, cosmids, or yeast artificial chromosomes. The approach makes use of a special vector, called LambdaScan, that reliably yields subclones with inserts in the size range 8-12 kb. A number of subclones, typically 96 or 192, are chosen at random, and the ends of the inserts are sequenced using vector-specific primers. Then long-range spectrum PCR is used to order and orient the clones. This combination of shotgun and directed sequencing results in a high-resolution physical map suitable for the identification of coding regions or for comparison of sequence organization among genomes. Computer simulations indicate that, for a target clone of 100 kb, the scanning of 192 subclones with sequencing reads as short as 350 bp results in an approximate ratio of 1:2:1 of regions of double-stranded sequence, single-stranded sequence, and gaps. Longer sequencing reads tip the ratio strongly toward increased double-stranded sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coccidioides immitis, cause of a recent epidemic of "Valley fever" in California, is typical of many eukaryotic microbes in that mating and meiosis have yet to be reported, but it is not clear whether sex is truly absent or just cryptic. To find out, we have undertaken a population genetic study using PCR amplification, screening for single-strand conformation polymorphisms, and direct DNA sequencing to find molecular markers with nucleotide-level resolution. Both population genetic and phylogenetic analyses indicate that C. immitis is almost completely recombining. To our knowledge, this study is the first to find molecular evidence for recombination in a fungus for which no sexual stage has yet been described. These results motivate a directed search for mating and meiosis and illustrate the utility of single-strand conformation polymorphism and sequencing with arbitrary primer pairs in molecular population genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the origin of autoimmune antibodies to double-stranded DNA is not known, the variable-region structures of such antibodies indicate that they are produced in response to antigen-selective stimulation. In accordance with this, results from experiments using artificial complexes of DNA and DNA-binding polypeptides for immunizations have indicated that DNA may induce these antibodies. Hence, the immunogenicity of DNA in vivo may depend upon other structures or processes that may render DNA immunogenic. We report that in vivo expression of a single DNA-binding protein, the polyoma virus T antigen, is sufficient to initiate production of anti-double-stranded DNA and anti-histone antibodies but not a panel of other autoantigens. Expression of a mutant, non-DNA-binding T antigen did result in strong production of antibodies to the T antigen, but only borderline levels of antibodies to DNA and no detectable antibodies to histones. Nonexpressing plasmid DNA containing the complete cDNA sequence for T antigen did not evoke such immune responses, indicating that DNA by itself is not immunogenic in vivo. The results represent a conceptual advance in understanding a potential molecular basis for initiation of autoimmunity in systemic lupus erythematosus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mouse is the best model system for the study of mammalian genetics and physiology. Because of the feasibility and importance of studying genetic crosses, the mouse genetic map has received tremendous attention in recent years. It currently contains over 14,000 genetically mapped markers, including 700 mutant loci, 3500 genes, and 6500 simple sequence length polymorphisms (SSLPs). The mutant loci and genes allow insights and correlations concerning physiology and development. The SSLPs provide highly polymorphic anchor points that allow inheritance to be traced in any cross and provide a scaffold for assembling physical maps. Adequate physical mapping resources--notably large-insert yeast artificial chromosome (YAC) libraries--are available to support positional cloning projects based on the genetic map, but a comprehensive physical map is still a few years away. Large-scale sequencing efforts have not yet begun in mouse, but comparative sequence analysis between mouse and human is likely to provide tremendous information about gene structure and regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana (Nrv), has been purified on the basis of reactivity of its carbohydrate epitope(s) with anti-horseradish peroxidase (HRP) antibodies that are specific markers for Drosophila neurons. Anti-Nrv monoclonal antibodies (mAbs), specific for the protein moiety of Nrv, were used to screen a Drosophila embryo cDNA expression library. Three cDNA clones (designated Nrv1, Nrv2.1, and Nrv2.2) were isolated that code for proteins recognized by anti-Nrv mAbs on Western blots. DNA sequencing and Southern blot analyses established that the cDNA clones are derived from two different genes. In situ hybridization to Drosophila polytene chromosomes showed that the cDNA clones map to the third chromosome near 92C-D. Nrv1 and Nrv2.1/2.2 have open reading frames of 309 and 322/323 amino acids, respectively, and they are 43.4% identical at the amino acid level. The proteins deduced from these clones exhibit significant homology in both primary sequence and predicted topology to the beta subunit of Na+,K(+)-ATPase. Immunoaffinity-purified Nrv is associated with a protein (M(r) 100,000) recognized on Western blots by anti-ATPase alpha-subunit mAb. Our results suggest that the Drosophila nervous system-specific antigens Nrv1 and -2 are neuronal forms of the beta subunit of Na+,K(+)-ATPase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach was developed for the isolation and characterization of soybean plasma membrane-associated proteins by immunoscreening of a cDNA expression library. An antiserum was raised against purified plasma membrane vesicles. In a differential screening of approximately 500,000 plaque-forming units with the anti-(plasma membrane) serum and DNA probes derived from highly abundant clones isolated in a preliminary screening, 261 clones were selected from approximately 1,200 antiserum-positive plaques. These clones were classified into 40 groups by hybridization analysis and 5'- and 3'-terminal sequencing. By searching nucleic acid and protein sequence data bases, 11 groups of cDNAs were identified, among which valosin-containing protein (VCP), clathrin heavy chain, phospholipase C, and S-adenosylmethionine:delta 24-sterol-C-methyltransferase have not to date been cloned from plants. The remaining 29 groups did not match any current data base entries and may, therefore, represent additional or yet uncharacterized genes. A full-length cDNA encoding the soybean VCP was sequenced. The high level of amino acid identity with vertebrate VCP and yeast CDC48 protein indicates that the soybean protein is a plant homolog of vertebrate VCP and yeast CDC48 protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trimeric human single-stranded DNA-binding protein (HSSB; also called RP-A) plays an essential role in DNA replication, nucleotide excision repair, and homologous DNA recombination. The p34 subunit of HSSB is phosphorylated at the G1/S boundary of the cell cycle or upon exposure of cells to DNA damage-inducing agents including ionizing and UV radiation. We have previously shown that the phosphorylation of p34 is catalyzed by both cyclin-dependent kinase-cyclin A complex and DNA-dependent protein kinase. In this study, we investigated the effect of phosphorylation of p34 by these kinases on the replication and repair function of HSSB. We observed no significant difference with the unphosphorylated and phosphorylated forms of HSSB in the simian virus 40 DNA replication or nucleotide excision repair systems reconstituted with purified proteins. The phosphorylation status of the p34 subunit of HSSB was unchanged during the reactions. We suggest that the phosphorylated HSSB has no direct effect on the basic mechanism of DNA replication and nucleotide excision repair reactions in vitro, although we cannot exclude a role of p34 phosphorylation in modulating HSSB function in vivo through a yet poorly understood control pathway in the cellular response to DNA damage and replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cardiomiopatia hipertrófica (CMH) é uma doença geneticamente determinada, caracterizada por hipertrofia ventricular primária, com prevalência estimada de 0.2% na população geral. Qualquer portador tem 50% de chance de transmitir esta doença para seus filhos, o que torna cada vez mais relevante a importância do estudo genético dos indivíduos acometidos e de seus familiares. Já foram descritas diversas mutações genéticas causadoras de CMH, a maioria em genes que codificam proteínas do sarcômero, e algumas mutações mais raras em genes não sarcoméricos. O objetivo desse estudo é sequenciar as regiões exônicas de genes candidatos, incluindo os principais envolvidos na hipertrofia miocárdica, utilizando o sequenciamento de nova geração (Generation Sequencing); testar a aplicabilidade e viabilidade deste sistema para identificar mutações já confirmadas e propor as prováveis novas mutações causadoras de CMH. Métodos e resultados: 66 pacientes não aparentados portadores de CMH foram estudados e submetidos à coleta de sangue para obtenção do DNA para analisar as regiões exômicas de 82 genes candidatos, utilizando a plataforma MiSeq (Illumina). Identificou-se 99 mutações provavelmente patogênicas em 54 pacientes incluídos no estudo (81,8%) relacionadas ou não a CMH, e distribuídas em 42 genes diferentes. Destas mutações 27 já haviam sido publicadas, sendo que 17 delas descritas como causadoras de CMH. Em 28 pacientes (42,4%) identificou-se mutação nos três principais genes sarcoméricos relacionados à CMH (MYH7, MYBPC3, TNNT2). Encontrou-se também um grande número de variantes não sonôminas de efeito clínico incerto e algumas mutações relacionadas a outras enfermidades. Conclusão: a análise da sequencia dos exônos de genes candidatos, demonstrou ser uma técnica promissora para o diagnóstico genético de CMH de forma mais rápida e sensível. A quantidade de dados gerados é o um fator limitante até o momento, principalmente em doenças geneticamente complexas com envolvimento de diversos genes e com sistema de bioinformática limitado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A maioria dos casos de puberdade precoce central (PPC) em meninas permanece idiopática. A hipótese de uma causa genética vem se fortalecendo após a descoberta de alguns genes associados a este fenótipo, sobretudo aqueles implicados com o sistema kisspeptina (KISS1 e KISS1R). Entretanto, apenas casos isolados de PPC foram relacionados à mutação na kisspeptina ou em seu receptor. Até recentemente, a maioria dos estudos genéticos em PPC buscava genes candidatos selecionados com base em modelos animais, análise genética de pacientes com hipogonadismo hipogonadotrófico, ou ainda, nos estudos de associação ampla do genoma. Neste trabalho, foi utilizado o sequenciamento exômico global, uma metodologia mais moderna de sequenciamento, para identificar variantes associadas ao fenótipo de PPC. Trinta e seis indivíduos com a forma de PPC familial (19 famílias) e 213 casos aparentemente esporádicos foram inicialmente selecionados. A forma familial foi definida pela presença de mais de um membro afetado na família. DNA genômico foi extraído dos leucócitos do sangue periférico de todos os pacientes. O estudo de sequenciamento exômico global realizado pela técnica ILLUMINA, em 40 membros de 15 famílias com PPC, identificou mutações inativadoras em um único gene, MKRN3, em cinco dessas famílias. Pesquisa de mutação no MKRN3 realizada por sequenciamento direto em duas famílias adicionais (quatro pacientes) identificou duas novas variantes nesse gene. O MKRN3 é um gene de um único éxon, localizado no cromossomo 15 em uma região crítica para a síndrome de Prader Willi. O gene MKRN3 sofre imprinting materno, sendo expresso apenas pelo alelo paterno. A descoberta de mutações em pacientes com PPC familial despertou o interesse para a pesquisa de mutações nesse gene em 213 pacientes com PPC aparentemente esporádica por meio de reação em cadeia de polimerase seguida de purificação enzimática e sequenciamento automático direto (Sanger). Três novas mutações e duas já anteriormente identificadas, incluindo quatro frameshifts e uma variante missense, foram encontradas, em heterozigose, em seis meninas não relacionadas. Todas as novas variantes identificadas estavam ausentes nos bancos de dados (1000 Genomes e Exome Variant Server). O estudo de segregação familial em três dessas meninas com PPC aparentemente esporádica e mutação no MKRN3 confirmou o padrão de herança autossômica dominante com penetrância completa e transmissão exclusiva pelo alelo paterno, demonstrando que esses casos eram, na verdade, também familiares. A maioria das mutações encontradas no MKRN3 era do tipo frameshift ou nonsense, levando a stop códons prematuros e proteínas truncadas e, portanto, confirmando a associação com o fenótipo. As duas mutações missenses (p.Arg365Ser e p.Phe417Ile) identificadas estavam localizadas em regiões de dedo ou anel de zinco, importantes para a função da proteína. Além disso, os estudos in silico dessas duas variantes demonstraram patogenicidade. Todos os pacientes com mutação no MKRN3 apresentavam características clínicas e hormonais típicas de ativação prematura do eixo reprodutivo. A mediana de idade de início da puberdade foi de 6 anos nas meninas (variando de 3 a 6,5) e 8 anos nos meninos (variando de 5,9 a 8,5). Tendo em vista o fenômeno de imprinting, análise de metilação foi também realizada em um subgrupo de 52 pacientes com PPC pela técnica de MS-MLPA, mas não foram encontradas alterações no padrão de metilação. Em conclusão, este trabalho identificou um novo gene associado ao fenótipo de PPC. Atualmente, mutações inativadoras no MKRN3 representam a causa genética mais comum de PPC familial (33%). O MKRN3 é o primeiro gene imprintado associado a distúrbios puberais em humanos. O mecanismo preciso de ação desse gene na regulação da secreção de GnRH necessita de estudos adicionais

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"NCJ-128567."