911 resultados para floating islands
Resumo:
Im Rahmen eines Projektes der Deutschen Forschungsgesellschaft (DFG) wurden am Lehrstuhl für Förder- und Lagerwesen der Universität Dortmund die Auswirkungen einer dynamischen Auftragssteuerung nach dem Floating-Batch-Prinzip auf die Effizienz und das Systemverhalten zweistufiger Kommissioniersysteme untersucht. Hierbei wurden Potenziale, technische und organisatorische Voraussetzungen sowie Grenzen für dessen Einsetzbarkeit abgeleitet, sowie geeignete Lösungen für bei der Umsetzung auftretende Problemstellungen ermittelt. Grundlage dieser Untersuchungen bildet eine detaillierte Analyse realisierter zweistufiger Kommissioniersysteme.
Resumo:
Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic ‘ark’. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island.
Variations in Ice Rafted Detritus on Beaches in the South Shetland Islands: A Possible Climate Proxy
Resumo:
Raised beach ridges on Livingston Island of the South Shetland Islands display variations in both quantity and source of ice rafted detritus (IRD) received over time. Whereas the modem beach exhibits little IRD, all of which is of local origin, the next highest beach (similar to250 C-14 yr BP) has large amounts, some of which comes from as far away as the Antarctic Peninsula. Significant quantities of IRD also were deposited similar to 1750 C-14 yr BP. Both time periods coincide with generally cooler regional conditions and, at least in the case of the similar to250 yr old beach, local glacial advance. We suggest that the increases in ice rafting may reflect periods of greater glacial activity, altered ocean circulation, and/or greater iceberg preservation during the late Holocene. Limited IRD and lack of far-travelled erratics on the modem beach are both consistent with the ongoing warming trend in the Antarctic Peninsula region.
Resumo:
The floating terminal of Jakobshavn Isbr ae, the fastest Greenland ice stream, has disintegrated since 2002, resulting in a doubling of ice velocity and rapidly lowering inland ice elevations. Conditions prior to disintegration were modeled using control theory in a plane-stress solution, and the Missoula model of ice-shelf flow. Both approaches pointed to a mechanism that inhibits ice flow and that is not captured by either approach. Jamming of flow, an inherent property of granular materials passing through a constriction (Jakobshavn Isfjord), is postulated as the mechanism. Rapid disintegration of heavily crevassed floating ice accompanies break-up of the ice jam.
Resumo:
A mass balance calculation was made for the floating part of Byrd Glacier, using 1978-79 ice elevation and velocity data, over the 45 km of Byrd Glacier from its grounding line to where it leaves its fjord and merges with the Ross Ice Shelf. Smoothed basal melting rates were relatively uniform over this distance and averaged 12 +/- 2 m yr(-1).
Resumo:
Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.
Resumo:
A new species of Cladorhizidac, front the Aleutian Islands is described and compared with all known species of Cladorhizza worldwide. Cladorhiza corona sp. now has a unique growth form with two planes of differently shaped appendages. Appendages are Inserted directly at the stalk; a spherical or conical body at the stalk is lacking. It is the only species reported where different spicule types occur in three morphologically different areas of the sponge. The spiculation of the basal plate is characterized by the occurrence of short, thick anisoxcas and the lack of anisochelae. Anisochelac arc found in the stalk and the basal appendages only. Flattened sigmancistras and (sub-)tylostyles are restricted to the crown. The arrangement of spicules is different in the basal plate, the stalk with the basal appendages, and in the distal append ages. The dimensions and combination of spicule types separate C. corona sp. nov. from all known members of the genus.
Resumo:
This paper is the maritime and sub–Antarctic contribution to the Scientific Committee for Antarctic Research (SCAR) Past Antarctic Ice Sheet Dynamics (PAIS) community Antarctic Ice Sheet reconstruction. The overarching aim for all sectors of Antarctica was to reconstruct the Last Glacial Maximum (LGM) ice sheet extent and thickness, and map the subsequent deglaciation in a series of 5000 year time slices. However, our review of the literature found surprisingly few high quality chronological constraints on changing glacier extents on these timescales in the maritime and sub–Antarctic sector. Therefore, in this paper we focus on an assessment of the terrestrial and offshore evidence for the LGM ice extent, establishing minimum ages for the onset of deglaciation, and separating evidence of deglaciation from LGM limits from those associated with later Holocene glacier fluctuations. Evidence included geomorphological descriptions of glacial landscapes, radiocarbon dated basal peat and lake sediment deposits, cosmogenic isotope ages of glacial features and molecular biological data. We propose a classification of the glacial history of the maritime and sub–Antarctic islands based on this assembled evidence. These include: (Type I) islands which accumulated little or no LGM ice; (Type II) islands with a limited LGM ice extent but evidence of extensive earlier continental shelf glaciations; (Type III) seamounts and volcanoes unlikely to have accumulated significant LGM ice cover; (Type IV) islands on shallow shelves with both terrestrial and submarine evidence of LGM (and/or earlier) ice expansion; (Type V) Islands north of the Antarctic Polar Front with terrestrial evidence of LGM ice expansion; and (Type VI) islands with no data. Finally, we review the climatological and geomorphological settings that separate the glaciological history of the islands within this classification scheme.