961 resultados para fixed speed induction generator
Resumo:
A broad perspective of various factors influencing alkene selenenylation has been developed by concurrent detailed analysis of key experimental and theoretical data, such as asymmetric induction, stereochemistry, relative reactivities, and comparison with that of alkene sulfenylation. Alkyl group branching a to the double bond was shown to have the greatest effect on alkene reactivity and the stereochemical outcome of corresponding addition reactions. This is in sharp contrast with other additions to alkenes, which depend more on the degree of substitution on C=C or upon substituent electronic effects. Electronic and steric effects influencing asymmetric induction, stereochemistry, regiochemistry, and relative reactivities in the addition of PhSeOTf to alkenes are compared and contrasted with those of PhSCl.
Resumo:
A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.
Resumo:
ICEM 2010
Resumo:
In everyday economic interactions, it is not clear whether sequential choices are visible or not to other participants: agents might be deluded about opponents'capacity to acquire,interpret or keep track of data, or might simply unexpectedly forget what they previously observed (but not chose). Following this idea, this paper drops the assumption that the information structure of extensive-form games is commonly known; that is, it introduces uncertainty into players' capacity to observe each others' past choices. Using this approach, our main result provides the following epistemic characterisation: if players (i) are rational,(ii) have strong belief in both opponents' rationality and opponents' capacity to observe others' choices, and (iii) have common belief in both opponents' future rationality and op-ponents' future capacity to observe others' choices, then the backward induction outcome obtains. Consequently, we do not require perfect information, and players observing each others' choices is often irrelevant from a strategic point of view. The analysis extends {from generic games with perfect information to games with not necessarily perfect information{the work by Battigalli and Siniscalchi (2002) and Perea (2014), who provide different sufficient epistemic conditions for the backward induction outcome.
Resumo:
Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.
Resumo:
The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle velocity is chosen as dependent variables to consider inter-particle hydrodynamic interactions. The sedimentation of a simple cubic array of spherical particles is simulated and compared to the results available to verify and validate the numerical code and computational scheme. The improvedmethod keeps the same computational cost of the order O(N log N) as usual accelerated Stokesian dynamics does. Then, more realistic random suspension sedimentation is investigated with the help ofMont Carlo method. The computational results agree well with experimental fitting. Finally, the sedimentation of finer cohesive particle, which is often observed in estuary environment, is presented as a further application in coastal engineering.
Resumo:
The effects of constitution of precursor mixed powders and scan speed on microstructure and wear properties were designed and investigated during laser clad gamma/Cr7C3/TiC composite coatings on gamma-TiAl intermetallic alloy substrates with NiCr-Cr3C2 precursor mixed powders. The results indicate that both the constitution of the precursor mixed powders and the beam scan rate have remarkable influence on microstructure and attendant hardness as well as wear resistance of the formed composite coatings. The wear mechanisms of the original TiAl alloy and laser clad composite coatings were investigated. The composite coating with an optimum compromise between constitution of NiCr-Cr3C2 precursor mixed powders as well as being processed under moderate scan speed exhibits the best wear resistance under dry sliding wear test conditions. (C) 2008 Elsevier Ltd. All rights reserved.