959 resultados para fish hybrid monitoring
Resumo:
The aim of this paper is to determine the suitability of solely stationary measurements for exposure assessment and management applications. For this purpose, quantified inhaled particle surface area (IPSA) doses using both stationary and personal particle exposure monitors were evaluated and compared.
Resumo:
Over the past decades, universities have increasingly become ambidextrous organizations reconciling scientific and commercial missions. In order to manage this ambidexterity, technology transfer offices (TTOs) were established in most universities. This paper studies a specific, often implemented, but rather understudied type of TTO, namely a hybrid TTO model uniting centralized and decentralized levels. Employing a qualitative research design, we examine how and why the two TTO levels engage in diverse boundary spanning activities to help nascent spin-off companies move through the pre-spin-off process. Our research identifies differences in the types of boundary spanning activities that centralized and decentralized TTOs perform and in the parties they engage with. We find geographical, technological and organizational proximity to be important antecedents of the TTOs’ engagement in external and internal boundary spanning activities. These results have important implications for both academics and practitioners interested in university technology transfer through spin-off creation.
Resumo:
This thesis examined the use of acoustic sensors for monitoring avian biodiversity. Acoustic sensors have the potential to significantly increase the spatial and temporal scale of ecological observations, however acoustic recordings of the environment can be opaque and complex. This thesis developed methods for analysing large volumes of acoustic data to maximise the detection of bird species, and compared the results of acoustic sensor biodiversity surveys with traditional bird survey techniques.
Resumo:
The Source Monitoring Framework is a promising model of constructive memory, yet fails because it is connectionist and does not allow content tagging. The Dual-Process Signal Detection Model is an improvement because it reduces mnemic qualia to a single memory signal (or degree of belief), but still commits itself to non-discrete representation. By supposing that ‘tagging’ means the assignment of propositional attitudes to aggregates of anemic characteristics informed inductively, then a discrete model becomes plausible. A Bayesian model of source monitoring accounts for the continuous variation of inputs and assignment of prior probabilities to memory content. A modified version of the High-Threshold Dual-Process model is recommended to further source monitoring research.
Resumo:
Public buildings and large infrastructure are typically monitored by tens or hundreds of cameras, all capturing different physical spaces and observing different types of interactions and behaviours. However to date, in large part due to limited data availability, crowd monitoring and operational surveillance research has focused on single camera scenarios which are not representative of real-world applications. In this paper we present a new, publicly available database for large scale crowd surveillance. Footage from 12 cameras for a full work day covering the main floor of a busy university campus building, including an internal and external foyer, elevator foyers, and the main external approach are provided; alongside annotation for crowd counting (single or multi-camera) and pedestrian flow analysis for 10 and 6 sites respectively. We describe how this large dataset can be used to perform distributed monitoring of building utilisation, and demonstrate the potential of this dataset to understand and learn the relationship between different areas of a building.
Resumo:
Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.
Resumo:
Background An important potential clinical benefit of using capnography monitoring during procedural sedation and analgesia (PSA) is that this technology could improve patient safety by reducing serious sedation-related adverse events, such as death or permanent neurological disability, which are caused by inadequate oxygenation. The hypothesis is that earlier identification of respiratory depression using capnography leads to a change in clinical management that prevents hypoxaemia. As inadequate oxygenation/ventilation is the most common reason for injury associated with PSA, reducing episodes of hypoxaemia would indicate that using capnography would be safer than relying on standard monitoring alone. Methods/design The primary objective of this review is to determine whether using capnography during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). A secondary objective of this review is to determine whether changes in the clinical management of sedated patients are the mediating factor for any observed impact of capnography monitoring on the rate of hypoxaemia. The potential adverse effect of capnography monitoring that will be examined in this review is the rate of inadequate sedation. Electronic databases will be searched for parallel, crossover and cluster randomised controlled trials comparing the use of capnography with standard monitoring alone during PSA that is administered in the hospital setting. Studies that included patients who received general or regional anaesthesia will be excluded from the review. Non-randomised studies will be excluded. Screening, study selection and data extraction will be performed by two reviewers. The Cochrane risk of bias tool will be used to assign a judgment about the degree of risk. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of capnography monitoring during PSA within hospital settings. Systematic review registration: PROSPERO CRD42015023740
Resumo:
Dorsiflexion (DF) of the foot plays an essential role in both controlling balance and human gait. Electromyography and Sonomyography can provide information on several aspects of muscle function. The aim was to describe a new method for real-time monitoring of muscular activity, as measured using EMG, muscular architecture, as measured using SMG, force, as measured using dynamometry, and kinematic parameters, as measured using IS during isometric and isotonic contractions of the foot DF. The present methodology may be clinically relevant because it involves a reproducible procedure which allows the function and structure of the foot DF to be monitored.
Resumo:
For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech. This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
Resumo:
In order to evaluate the capability of 1H MRS to monitor longitudinal changes in subjects with probable Alzheimer's disease (AD), the temporal stability of the metabolite measures N-acetylaspartate and N- acetylaspartylglutamate (NA), total Creatine (Cr), myo-Inositol (mI), total Choline (Chol), NA/Cr, mI/Cr, Chol/Cr and NA/mI were investigated in a cohort of normal older adults. Only the metabolite measures NA, mI, Cr, NA/Cr, mI/Cr, and NA/mI were found to be stable after a mean interval of 260 days. Relative and absolute metabolite measures from a cohort of patients with probable AD were subsequently compared with data from a sample of normal older adult control subjects, and correlated with mental status and the degree of atrophy in the localized voxel. Concentrations of NA, NA/Cr, and NA/mI were significantly reduced in the AD group with concomitant significant increases in mI and mI/Cr. There were no differences between the two groups in measures of Cr, Chol, or Chol/Cr. Significant correlations between mental status as measured by the Mini-Mental State Examination and NA/mI, mI/Cr and NA were found. These metabolite measures were also significantly correlated with the extent of atrophy (as measured by CSF and GM composition) in the spectroscopy voxel.
Resumo:
The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.
Resumo:
Resolving species relationships and confirming diagnostic morphological characters for insect clades that are highly plastic, and/or include morphologically cryptic species, is crucial for both academic and applied reasons. Within the true fly (Diptera) family Chironomidae, a most ubiquitous freshwater insect group, the genera CricotopusWulp, 1874 and ParatrichocladiusSantos-Abreu, 1918 have long been taxonomically confusing. Indeed, until recently the Australian fauna had been examined in just two unpublished theses: most species were known by informal manuscript names only, with no concept of relationships. Understanding species limits, and the associated ecology and evolution, is essential to address taxonomic sufficiency in biomonitoring surveys. Immature stages are collected routinely, but tolerance is generalized at the genus level, despite marked variation among species. Here, we explored this issue using a multilocus molecular phylogenetic approach, including the standard mitochondrial barcode region, and tested explicitly for phylogenetic signal in ecological tolerance of species. Additionally, we addressed biogeographical patterns by conducting Bayesian divergence time estimation. We sampled all but one of the now recognized Australian Cricotopus species and tested monophyly using representatives from other austral and Asian locations. Cricotopus is revealed as paraphyletic by the inclusion of a nested monophyletic Paratrichocladius, with in-group diversification beginning in the Eocene. Previous morphological species concepts are largely corroborated, but some additional cryptic diversity is revealed. No significant relationship was observed between the phylogenetic position of a species and its ecology, implying either that tolerance to deleterious environmental impacts is a convergent trait among many Cricotopus species or that sensitive and restricted taxa have diversified into more narrow niches from a widely tolerant ancestor.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Objectives: There is little evidence and few guidelines to inform the most appropriate dosing and monitoring for antimicrobials in the ICU. We aimed to survey current practices around the world. Methods: An online structured questionnaire was developed and sent by e-mail to obtain information on local antimicrobial prescribing practices for glycopeptides, piperacillin/tazobactam, carbapenems, aminoglycosides and colistin. Results: A total of 402 professionals from 328 hospitals in 53 countries responded, of whom 78% were specialists in intensive care medicine (41% intensive care, 30% anaesthesiology, 14% internal medicine) and 12% were pharmacists. Vancomycin was used as a continuous infusion in 31% of units at a median (IQR) daily dose of 25 (25–30) mg/kg. Piperacillin/tazobactam was used as an extended infusion by 22% and as a continuous infusion by 7%. An extended infusion of carbapenem (meropenem or imipenem) was used by 27% and a continuous infusion by 5%. Colistin was used at a daily dose of 7.5 (3.9–9) million IU (MIU)/day, predominantly as a short infusion. The most commonly used aminoglycosides were gentamicin (55%) followed by amikacin (40%), with administration as a single daily dose reported in 94% of the cases. Gentamicin was used at a daily dose of 5 (5–6) mg/day and amikacin at a daily dose of 15 (15–20) mg/day. Therapeutic drug monitoring of vancomycin, piperacillin/tazobactam and meropenem was used by 74%, 1% and 2% of the respondents, respectively. Peak aminoglycoside concentrations were sampled daily by 28% and trough concentrations in all patients by 61% of the respondents. Conclusions: We found wide variability in reported practices for antibiotic dosing and monitoring. Research is required to develop evidence-based guidelines to standardize practices.
Resumo:
This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible out- comes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.