999 resultados para fetus cell


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium indicus pranii (MIP) is approved for use as an adjuvant (Immuvac/Cadi-05) in the treatment of leprosy. In addition, its efficacy is being investigated in clinical trials on patients with tuberculosis and different tumors. To evaluate and delineate the mechanisms by which autoclaved MIP enhances anti-tumor responses, the growth of solid tumors consisting of Sp2/0 (myeloma) and EL4 (thymoma) cells was studied in BALB/c and C57BL/6 mice, respectively. Treatment of mice with a single intra-dermal (i.d.) injection of MIP 3 days after Sp2/0 implantation greatly suppresses tumor growth. MIP treatment of tumor bearing mice lowers Interleukin (IL)6 but increases IL12p70 and IFN? amounts in sera. Also, increase in CD8+ T cell mediated lysis of specific tumor targets and production of high amounts of IL2 and IFN? by CD4+ T cells upon stimulation with specific tumor antigens in MIP treated mice is observed. Furthermore, MIP is also effective in reducing the growth of EL4 tumors; however, this efficacy is reduced in Ifn?-/- mice. In fact, several MIP mediated anti-tumor responses are greatly abrogated in Ifn?-/- mice: increase in serum Interleukin (IL)12p70 amounts, induction of IL2 and lysis of EL4 targets by splenocytes upon stimulation with specific tumor antigens. Interestingly, tumor-induced increase in serum IL12p70 and IFN? and reduction in growth of Sp2/0 and EL4 tumors by MIP are not observed in nonobese diabetic severe combined immunodeficiency mice. Overall, our study clearly demonstrates the importance of a functional immune network, in particular endogenous CD4+ and CD8+ T cells and IFN?, in mediating the anti-tumor responses by MIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cationic amphiphile, cholest-5en-3 beta-oxyethyl pyridinium bromide (PY(+)-Chol), is able to efficiently disperse exfoliated graphene (GR) in water by the physical adsorption of PY(+)-Chol on the surface of GR to form stable, dark aqueous suspensions at room temperature. The GRPY(+)-Chol suspension can then be used to solubilize Tamoxifen Citrate (TmC), a breast cancer drug, in water. The resulting TmCGRPY(+)-Chol is stable for a long time without any precipitation. Fluorescence emission and UV absorption spectra indicate the existence of noncovalent interactions between TmC, GR, and PY(+)-Chol in these suspensions. Electron microscopy shows the existence of segregated GR sheets and TmC ribbons in the composite suspensions. Atomic force microscopy indicates the presence of extended structures of GRPY(+)-Chol, which grows wider in the presence of TmC. The slow time-dependent release of TmC is noticed in a reconstituted cell culture medium, a property useful as a drug carrier. TmCGRPY(+)-Chol selectively enhanced the cell death (apoptosis) of the transformed cancer cells compared to normal cells. This potency is found to be true for a wide range of transformed cancer cells viz. HeLa, A549, ras oncogene-transformed NIH3T3, HepG2, MDA-MB231, MCF-7, and HEK293T compared to the normal cell HEK293 in vitro. Confocal microscopy confirmed the high efficiency of TmCGRPY(+)-Chol in delivering the drug to the cells, compared to the suspensions devoid of GR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral photocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT: PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT: PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT: PCBM. (C) 2011 American Institute of Physics. [doi:10.1063/1.3670043]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure. (c) 2012 IUBMB IUBMB Life, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio4-(p-tolyl)-1,2 ,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC50 of 3-5 mu M) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G1 phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of cell proliferation in the external granular layer (EGL) of the developing cerebellum is important for its normal patterning. An important signal that regulates EGL cell proliferation is Sonic hedgehog (Shh). Shh is secreted by the Purkinje cells (PC) and has a mitogenic effect on the granule cell precursors of the EGL. Deregulation of Shh signaling has been associated with abnormal development, and been implicated in medulloblastomas, which are tumors that arise from the cerebellum. Given the importance of the Shh pathway in cerebellum development and disease, there has been no systematic study of its expression pattern during human cerebellum development. In this study, we describe the expression pattern of Shh, its receptor patched, smoothened, and its effectors that belong to the Gli family of transcription factors, during normal human cerebellum development from 10 weeks of gestational age, and in medulloblastomas that represents a case of abnormal cell proliferation in the cerebellum. This expression pattern is compared to equivalent stages in the normal development of cerebellum in mouse, as well as in tumors. Important differences between human and mouse that reflect differences in the normal developmental program between the 2 species are observed. First, in humans there appears to be a stage of Shh signaling within the EGL, when the PC are not yet the source of Shh. Second, unlike in the postnatal mouse cerebellum, expression of Shh in the PC in the postnatal human cerebellum is downregulated. Finally, medulloblastomas in the human but not in patched heterozygote mouse express Shh. These results highlight cross-species differences in the regulation of the Shh signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence suggests that cancers arise in stem/progenitor cells. Yet, the requirements for transformation of these primitive cells remains poorly understood. In this study, we have exploited the `mammosphere' system that selects for primitive mammary stem/progenitor cells to explore their potential and requirements for transformation. Introduction of Simian Virus 40 Early Region and hTERT into mammosphere-derived cells led to the generation of NBLE, an immortalized mammary epithelial cell line. The NBLEs largely comprised of bi-potent progenitors with long-term self-renewal and multi-lineage differentiation potential. Clonal and karyotype analyses revealed the existence of heterogeneous population within NBLEs with varied proliferation, differentiation and sphere-forming potential. Significantly, injection of NBLEs into immunocompromised mice resulted in the generation of invasive ductal adenocarcinomas. Further, these cells harbored a sub-population of CD44(+)/CD24(-) fraction that alone had sphere- and tumor-initiating potential and resembled the breast cancer stem cell gene signature. Interestingly, prolonged in vitro culturing led to their further enrichment. The NBLE cells also showed increased expression of stemness and epithelial to mesenchymal transition markers, deregulated self-renewal pathways, activated DNA-damage response and cancer-associated chromosomal aberrations-all of which are likely to have contributed to their tumorigenic transformation. Thus, unlike previous in vitro transformation studies that used adherent, more differentiated human mammary epithelial cells our study demonstrates that the mammosphere-derived, less-differentiated cells undergo tumorigenic conversion with only two genetic elements, without requiring oncogenic Ras. Moreover, the striking phenotypic and molecular resemblance of the NBLE-generated tumors with naturally arising breast adenocarcinomas supports the notion of a primitive breast cell as the origin for this subtype of breast cancer. Finally, the NBLEs represent a heterogeneous population of cells with striking plasticity, capable of differentiation, self-renewal and tumorigenicity, thus offering a unique model system to study the molecular mechanisms involved with these processes. Oncogene (2012) 31, 1896-1909; doi:10.1038/onc.2011.378; published online 29 August 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of an experimental and numerical study conducted on a closed-cell aluminium foam that was subjected to uniaxial compression with lateral constraint. X-ray computed tomography was utilized to gain access into the three-dimensional (3-D) structure of the foam and some aspects of the deformation mechanisms. A series of advanced 3-D image analyses are conducted on the 3-D images aimed at characterizing the strain localization regions. We identify the morphological/geometrical features that are responsible for the collapse of the cells and the strain localization. A novel mathematical approach based on a Minkowski tensor analysis along with the mean intercept length technique were utilized to search for signatures of anisotropy across the foam sample and its evolution as a function of loading. Our results show that regions with higher degrees of anisotropy in the undeformed foam have a tendency to initiate the onset of cell collapse. Furthermore, we show that strain hardening occurs predominantly in regions with large cells and high anisotropy. We combine the finite element method with the tomographic images to simulate the mechanical response of the foam. We predict further deformation in regions where the foam is already deformed. Crown Copyright (C) 2012 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the disk is essentially collisionless. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfven velocity, v(A), is comparable to the speed of light, c (independent of the initial value of v(A)/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission-from the radio to the gamma-rays-of systems such as Sgr A*.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-starvation amoebae of Dictyostelium discoideum exhibit random movements. Starved cells aggregate by directed movements (chemotaxis) towards cyclic AMP and differentiate into live spores or dead stalk cells. Many differences between presumptive spore and stalk cells precede differentiation. We have examined whether cell motility-related factors are also among them. Cell speeds and localisation of motility-related signalling molecules were monitored by live cell imaging and immunostaining (a) in nutrient medium during growth, (b) immediately following transfer to starvation medium and (c) in nutrient medium that was re-introduced after a brief period of starvation. Cells moved randomly under all three conditions but mean speeds increased following transfer from nutrient medium to starvation medium; the transition occurred within 15 min. The distribution of speeds in starvation medium was bimodal: about 20% of the cells moved significantly faster than the remaining 80%. The motility-related molecules F-actin, PTEN and PI3 kinase were distributed differently in slow and fast cells. Among starved cells, the calcium content of slower cells was lower than that of the faster cells. All differences reverted within 15 min after restoration of the nutrient medium. The slow/fast distinction was missing in Polysphondylium pallidum, a cellular slime mould that lacks the presumptive stalk and spore cell classes, and in the trishanku (triA(center dot)) mutant of D. discoideum, in which the classes exist but are unstable. The transition from growth to starvation triggers a spontaneous and reversible switch in the distribution of D. discoideum cell speeds. Cells whose calcium content is relatively low (known to be presumptive spore cells) move slower than those whose calcium levels are higher (known to be presumptive stalk cells). Slow and fast cells show different distributions of motility-related proteins. The switch is indicative of a bistable mechanism underlying cell motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol as standardized in the IEEE 802.11 Distributed Coordination Function (DCF). The approximation is that, when n of the M queues are non-empty, the (transmission) attempt probability of each of the n non-empty nodes is given by the long-term (transmission) attempt probability of n saturated nodes. With the arrival of packets into the M queues according to independent Poisson processes, the SDAR approximation reduces a single cell with non-saturated nodes to a Markovian coupled queueing system. We provide a sufficient condition under which the joint queue length Markov chain is positive recurrent. For the symmetric case of equal arrival rates and finite and equal buffers, we develop an iterative method which leads to accurate predictions for important performance measures such as collision probability, throughput and mean packet delay. We replace the MAC layer with the SDAR model of contention by modifying the NS-2 source code pertaining to the MAC layer, keeping all other layers unchanged. By this model-based simulation technique at the MAC layer, we achieve speed-ups (w.r.t. MAC layer operations) up to 5.4. Through extensive model-based simulations and numerical results, we show that the SDAR model is an accurate model for the DCF MAC protocol in single cells. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazoli din-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2 +/- 1.8 mu M), human breast adenocarcinoma (MCF-7) (IC50, 10.0 +/- 0.5 mu M), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0 +/- 1 mu M), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8 +/- 0.3 mu M) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5 +/- 1 mu M) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 mu M), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 +/- 1.8 mu M, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K-i) of 5.2 +/- 1.5 mu M suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.