985 resultados para femoral nerve block


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is a major neurotransmitter and effective settlement inducer in abalone aquaculture. This study aimed to explore the distribution of GABA within neural tissues of Haliotis asinina. Gamma-aminobutyric acid was found in neuronal cell type 1 of 3 major ganglia (i.e., cerebral, pleuropedal, and visceral ganglia) of both sexes. The distribution of GABA-immunoreactive (-ir) cells in the cerebral ganglion was concentrated mostly in the cortex region of the dorsal horn, whereas it was scattered throughout the pleuropedal ganglion, with more in the upper half. Gamma-aminobutyric acid-ir nerve fibers were found throughout the neuropils of the ganglia. The visceral ganglion had the least numbers of GABA-ir neurons compared with the other 2 ganglia. The cells were distributed mainly in the dorsal horn. We also observed GABA to be colocalized with 2 other neurotransmitters: serotonin (5-HT) and dopamine (DA). In the cerebral ganglion, fluorescence double staining of GABA and 5-HT, and GABA and DA showed immunoreactivity in separate cells and was also colocalized in the same cells. In the pleuropedal ganglion, the staining pattern was similar to the cerebral ganglion, but positive-staining cells were less numerous. In the visceral ganglion, GABA and DA, and GABA and 5-HT were colocalized in the same cell types. Overall, we found that GABAergic cells were most numerous in the cerebral ganglion of H. asinina. Further studies are required to determine the functions of these neurotransmitters in relation to their distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a viable route to fibrillar micelles and entrapped vesicles in aqueous solutions. Nanofibrillar micelles and entrapped vesicles were prepared from complexes of a biodegradable block copolymer poly(ethylene oxide)-block-poly(lactide) (PEO-b-PLA) and a polyelectrolyte poly(acrylic acid) (PAA) in aqueous media and directly visualized using cryogenic transmission electron microscopy (cryo-TEM). The self-assembly and the morphological changes in the complexes were induced by the addition of PAA/water solution into the PEO-b-PLA in tetrahydrofuran followed by dialysis against water. A variety of morphologies including spherical wormlike and fibrillar micelles, and both unilamellar and entrapped vesicles, were observed, depending on the composition, complementary binding sites of PAA and PEO, and the change in the interfacial energy. Increasing the water content in each [AA]/[EO] ratio led to a morphological transition from spheres to vesicles, displaying both the composition- and dilution-dependent micellar-to-vesicular morphological transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block ionomer complexes SSEBS-c-PCL were prepared, as a consequence of proton transfer from the sulfonic acid of sulfonated polystyrene-block- poly(ethylene-ran-butylene)-block-polystyrene (SSEBS) to the tertiary amine of a tertiary amine terminated poly(?-caprolactone) (APCL). The phase behavior of SSEBS-c-PCL was thoroughly investigated and the results showed that APCL in SSEBS-c-PCL displays unique crystallization behavior owing to the influence of interactions between the amine and sulfonic acid groups as well as the effects of confinement. Further, small-angle X-ray scattering study revealed that SSEBS-c-PCL displays a less ordered micro-phase structure compared to SSEBS. A quantitative mapping of mechanical properties at the nanoscale was achieved using peak force mode atomic force microscopy. It is found that the block ionomer complex possesses a higher average elastic modulus after complexation with crystallizable APCL. Additionally, the moduli for both hard and soft phases increase and the phase with higher modulus assignable to the hard SPS component shows much more pronounced changes after complexation, confirming that APCL interacts mainly with the SPS blocks. This provides an understanding of the composition and nanomechanical properties of these new block ionomer complexes and an alternative insight into the micro-phase structures of multi-phase materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emergency department access block is an urgent problem faced by many public hospitals today. When access block occurs, patients in need of acute care cannot access inpatient wards within an optimal time frame. A widely held belief is that access block is the end product of a long causal chain, which involves poor discharge planning, insufficient bed capacity, and inadequate admission intensity to the wards. This paper studies the last link of the causal chain-the effect of admission intensity on access block, using data from a metropolitan hospital in Australia. We applied several modern statistical methods to analyze the data. First, we modeled the admission events as a nonhomogeneous Poisson process and estimated time-varying admission intensity with penalized regression splines. Next, we established a functional linear model to investigate the effect of the time-varying admission intensity on emergency department access block. Finally, we used functional principal component analysis to explore the variation in the daily time-varying admission intensities. The analyses suggest that improving admission practice during off-peak hours may have most impact on reducing the number of ED access blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we report a novel approach to toughen epoxy thermosets using a block ionomer, i.e., sulfonated polystyrene-block-poly(ethylene-co-butylene)-block- polystyrene (SSEBS). SSEBS was synthesized by sulfonation of SEBS with 67 wt % polystyrene (PS). Phase morphology of the epoxy/SSEBS blends can be controlled at either nanometer or micrometer scale by simply adjusting the sulfonation degree of SSEBS. It has been found that there exists a critical degree of sulfonation (10.8 mol %) forming nanostructures in these epoxy/SSEBS blends. Above this critical value, macrophase separation can be avoided and only microphase separation occurs, yielding transparent nanostructured blends. All epoxy/SSEBS blends display increased fracture toughness compared to neat epoxy. But the toughening efficiency varies with the phase domain size, and their correlation has been established over a broad range of length scales from nanometers to a few micrometers. In the nanostructured blends with SSEBS of high sulfonation degrees, the fracture toughness decreases with decreasing size of the phase domains. In the macrophase-separated blends, only a slight improvement in toughness can be obtained with SSEBS of low sulfonation degrees. The epoxy blend with submicrometer phase domains in the range 0.05-1.0 μm containing SSEBS of a moderate degree of sulfonation (5.8 mol %) displays the maximum toughness. This study has clearly clarified the role of phase domain size on toughening efficiency in epoxy thermosets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While it is widely acknowledged that bones adapt to the site-specific prevalent loading environment, reasonable ways to estimate skeletal loads are not necessarily available. For long bone shafts, muscles acting to bend the bone may provide a more appropriate surrogate of the loading than muscles expected to cause compressive loads. Thus, the aim of this study was to investigate whether mid-thigh muscle cross-sectional area (CSA) was a better predictor of tibial mid-shaft bone strength than mid-tibia muscle CSA in middle aged and older men. 181 Caucasian men aged 50–79 years (mean±SD; 61±7 years) participated in this study. Mid-femoral and mid-tibial bone traits cortical area , density weighted polar moment of area and muscle CSA [cm²] were assessed with computed tomography. Tibial bone traits were positively associated with both the mid-femur (r=0.44 to 0.46, P<0.001) and the mid-tibia muscle CSA (r=0.35 to 0.37, P<0.001). Multivariate regression analysis, adjusting for age, weight, physical activity and femoral length, indicated that mid-femur muscle CSA predicted tibial mid-shaft bone strength indices better thn mid-tibia muscle CSA. In conclusion, the association between a given skeletal site and functionally adjacent muscles may provide a meaningful probe of the site-specific effect of loading on bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses an important issue in polymer materials science, the toughening of thermosetting polymers. A novel approach has been developed, i.e., the use of block ionomers/complexes to promote compatibilization with thermosetting epoxies. The morphology and mechanical properties of the resulting nanostructured epoxies were intensively studied to establish structure-property correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focused on the synthesis and self-assembly of novel block copolymers for the purpose of drug delivery. The block copolymers achieved comprise of a synthetic block and a peptide block and self-assemble into nano sized particles which can act as drug containers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.