924 resultados para failure time model
Resumo:
A key component of robotic path planning is ensuring that one can reliably navigate a vehicle to a desired location. In addition, when the features of interest are dynamic and move with oceanic currents, vehicle speed plays an important role in the planning exercise to ensure that vehicles are in the right place at the right time. Aquatic robot design is moving towards utilizing the environment for propulsion rather than traditional motors and propellers. These new vehicles are able to realize significantly increased endurance, however the mission planning problem, in turn, becomes more difficult as the vehicle velocity is not directly controllable. In this paper, we examine Gaussian process models applied to existing wave model data to predict the behavior, i.e., velocity, of a Wave Glider Autonomous Surface Vehicle. Using training data from an on-board sensor and forecasting with the WAVEWATCH III model, our probabilistic regression models created an effective method for forecasting WG velocity.
Resumo:
The multifractal properties of daily rainfall time series at the stations in Pearl River basin of China over periods of up to 45 years are examined using the universal multifractal approach based on the multiplicative cascade model and the multifractal detrended fluctuation analysis (MF-DFA). The results from these two kinds of multifractal analyses show that the daily rainfall time series in this basin have multifractal behavior in two different time scale ranges. It is found that the empirical multifractal moment function K(q)K(q) of the daily rainfall time series can be fitted very well by the universal multifractal model (UMM). The estimated values of the conservation parameter HH from UMM for these daily rainfall data are close to zero indicating that they correspond to conserved fields. After removing the seasonal trend in the rainfall data, the estimated values of the exponent h(2)h(2) from MF-DFA indicate that the daily rainfall time series in Pearl River basin exhibit no long-term correlations. It is also found that K(2)K(2) and elevation series are negatively correlated. It shows a relationship between topography and rainfall variability.
Resumo:
Messenger RNAs (mRNAs) can be repressed and degraded by small non-coding RNA molecules. In this paper, we formulate a coarsegrained Markov-chain description of the post-transcriptional regulation of mRNAs by either small interfering RNAs (siRNAs) or microRNAs (miRNAs). We calculate the probability of an mRNA escaping from its domain before it is repressed by siRNAs/miRNAs via cal- culation of the mean time to threshold: when the number of bound siRNAs/miRNAs exceeds a certain threshold value, the mRNA is irreversibly repressed. In some cases,the analysis can be reduced to counting certain paths in a reduced Markov model. We obtain explicit expressions when the small RNA bind irreversibly to the mRNA and we also discuss the reversible binding case. We apply our models to the study of RNA interference in the nucleus, examining the probability of mRNAs escaping via small nuclear pores before being degraded by siRNAs. Using the same modelling framework, we further investigate the effect of small, decoy RNAs (decoys) on the process of post-transcriptional regulation, by studying regulation of the tumor suppressor gene, PTEN : decoys are able to block binding sites on PTEN mRNAs, thereby educing the number of sites available to siRNAs/miRNAs and helping to protect it from repression. We calculate the probability of a cytoplasmic PTEN mRNA translocating to the endoplasmic reticulum before being repressed by miRNAs. We support our results with stochastic simulations
Resumo:
Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spatiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed as a matrix normal distribution, composed of separable and compact row and column covariances. We relate the marginals of the distribution to the shape, trajectory, and shape-trajectory models of prior art. When the marginal shape distribution is not available from training data, we show how placing a hierarchical prior over shapes results in a convex MAP solution in terms of the trace-norm. The matrix normal distribution, fit to a single sequence, outperforms state-of-the-art methods at reconstructing 3D motion data in the presence of significant data loss, while providing covariance estimates of the imputed points.
Resumo:
Background Optimal infant nutrition comprises exclusive breastfeeding, with complementary foods introduced from six months of age. How parents make decisions regarding this is poorly studied. This study begins to address the dearth of research into the decision-making processes used by first-time mothers relating to the introduction of complementary foods. Methods This qualitative explorative study was conducted using interviews (13) and focus groups (3). A semi-structured interview guide based on the Theory of Planned Behaviour (TPB). The TPB, a well-validated decision-making model, identifies the key determinants of a behaviour through behavioural beliefs, subjective norms, and perceived behavioural control over the behaviour. It is purported that these beliefs predict behavioural intention to perform the behaviour, and performing the behaviour. A purposive, convenience, sample of 21 metropolitan parents recruited through advertising at local playgroups and childcare centres, and electronically through the University community email list self-selected to participate. Data were analysed thematically within the theoretical constructs: behavioural beliefs, subjective norms and perceived behavioural control. Data relating to sources of information about the introduction of complementary foods were also collected. Results Overall, first-time mothers found that waiting until six months was challenging despite knowledge of the WHO recommendations and an initial desire to comply with this guideline. Beliefs that complementary foods would assist the infants' weight gain, sleeping patterns and enjoyment at meal times were identified. Barriers preventing parents complying with the recommendations included subjective and group norms, peer influences, infant cues indicating early readiness and food labelling inconsistencies. The most valued information source was from peers who had recently introduced complementary foods. Conclusions First-time mothers in this study did not demonstrate a good understanding of the rationale behind the WHO recommendations, nor did they understand fully the signs of readiness of infants to commence solid foods. Factors that assisted waiting until six months were a trusting relationship with a health professional whose practice and advice was consistent with the recommendations and/or when their infant was developmentally ready for complementary foods at six months and accepted them with ease and enthusiasm. Barriers preventing parents complying with the recommendations included subjective and group norms, peer influences, infant cues indicating early readiness and food labelling inconsistencies.
Resumo:
Virtual working environments are intrinsic to the contemporary workplace and collaborative skills are a vital graduate capability. To develop students’ collaborative skills, first year medical laboratory science students undertake a group poster project, based on a blended learning model. Learning is scaffolded in lectures, workshops in collaborative learning spaces, practitioner mentoring sessions, and online resources. Google Drive provides an online collaborative space for students to realise tangible outcomes from this learning. A Google Drive document is created for each group and shared with members. In this space, students assign tasks and plan workflow, share research, progressively develop poster content, reflect and comment on peer contributions and use the messaging functions to ‘talk’ to group members. This provides a readily accessible, transparent record of group work, crucial in peer assessment, and a communication channel for group members and the lecturer, who can support groups if required. This knowledge creation space also augments productivity and effectiveness of face-to-face collaboration. As members are randomly allocated to groups and are often of diverse backgrounds and unknown to each other, resilience is built as students navigate the uncertainties and complexities of group dynamics, learning to focus on the goal of the team task as they constructively and professionally engage in team dialogue. Students are responsible and accountable for individual and group work. The use of Google Drive was evaluated in a survey including Likert scale and open ended qualitative questions. Statistical analysis was carried out. Results show students (79%) valued the inclusion of online space in collaborative work and highly appreciated (78%) the flexibility provided by Google Drive, while recognising the need for improved notification functionality. Teaching staff recognised the advantages in monitoring and moderating collaborative group work, and the transformational progression in student collaborative as well as technological skill acquisition, including professional dialogue.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
Background Longer breastfeeding duration appears to have a protective effect against childhood obesity. This effect may be partially mediated by maternal feeding practices during the first years of life. However, the few studies that have examined links between breastfeeding duration and subsequent feeding practices have yielded conflicting results. Objective Using a large sample of first-time mothers and a newly validated, comprehensive measure of maternal feeding (the Feeding Practices and Structure Questionnaire1), this study examined associations between breastfeeding duration and maternal feeding practices at child age 24 months. Methods Mothers (n = 458) enrolled in the NOURISH trial2 provided data on breastfeeding at child age 4, 14 and 24 months, and on feeding practices at 24 months. Structural Equation Modelling was used to examine associations between breastfeeding duration and five non-responsive and four structure-related ‘authoritative’ feeding practices, adjusting for a range of maternal and child characteristics. Results The model showed acceptable fit (χ2/df = 1.68; RMSEA = .04, CFI = .91 and TLI = .89) and longer breastfeeding duration was negatively associated with four out of five non-responsive feeding practices and positively associated with three out of four structure-related feeding practices. Overall, these results suggest that mothers who breastfeed longer reported using more appropriate feeding practices. Conclusion These data demonstrate an association between longer breastfeeding duration and authoritative feeding practices characterised by responsiveness and structure, which may partly account for the apparent protective effect of breastfeeding on childhood obesity.
Resumo:
We apply the method of multiple scales (MMS) to a well known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the time scale of typical cutting tool oscillations. The MMS upto second order for such systems has been developed recently, and is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy. The main advantage of the present analysis is that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space. Lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS. Finally, the strong sensitivity of the dynamics to small changes in parameter values is seen clearly.
Resumo:
By using small scale model tests, the interference effect on the ultimate bearing capacity of two closely spaced strip footings, placed on the surface of dry sand, was investigated. At any time, the footings were assumed to (1) carry exactly the same magnitude of load; and (2) settle to the same extent. No tilt of the footing was allowed. The effect of clear spacing (s) between two footings was explicitly studied. An interference of footings leads to a significant increase in their bearing capacity; the interference effect becomes even more substantial with an increase in the relative density of sand. The bearing capacity attains a peak magnitude at a certain (critical) spacing between two footings. The experimental observations presented in this technical note were similar to those given by different available theories. However, in a quantitative sense, the difference between the experiments and theories was seen to be still significant and it emphasizes the need of doing a further rigorous analysis in which the effect of stress level on the shear strength parameters of soil mass can be incorporated properly.
Resumo:
The theory for time-resolved, pump-probe, photoemission spectroscopy and other pump-probe experiments is developed. The formal development is completely general, incorporating all of the nonequilibrium effects of the pump pulse and the finite time width of the probe pulse, and including possibilities for taking into account band structure and matrix element effects, surface states, and the interaction of the photoexcited electrons with the system leading to corrections to the sudden approximation. We also illustrate the effects of windowing that arise from the finite width of the probe pulse in a simple model system by assuming the quasiequilibrium approximation.
Resumo:
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.
Resumo:
Background and Purpose Acute cerebral ischemic events are associated with rupture of vulnerable carotid atheroma and subsequent thrombosis. Factors such as luminal stenosis and fibrous cap thickness have been thought to be important risk factors for plaque rupture. We used a flow-structure interaction model to simulate the interaction between blood flow and atheromatous plaque to evaluate the effect of the degree of luminal stenosis and fibrous cap thickness on plaque vulnerability. Methods A coupled nonlinear time-dependent model with a flow-plaque interaction simulation was used to perform flow and stress/strain analysis in a stenotic carotid artery model. The stress distribution within the plaque and the flow conditions within the vessel were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 95%. A rupture stress of 300 kPa was chosen to indicate a high risk of plaque rupture. A 1-sample t test was used to compare plaque stresses with the rupture stress. Results High stress concentrations were found in the plaques in arteries with >70% degree of stenosis. Plaque stresses in arteries with 30% to 70% stenosis increased exponentially as fibrous cap thickness decreased. A decrease of fibrous cap thickness from 0.4 to 0.2 mm resulted in an increase of plaque stress from 141 to 409 kPa in a 40% degree stenotic artery. Conclusions There is an increase in plaque stress in arteries with a thin fibrous cap. The presence of a moderate carotid stenosis (30% to 70%) with a thin fibrous cap indicates a high risk for plaque rupture. Patients in the future may be risk stratified by measuring both fibrous cap thickness and luminal stenosis.
Resumo:
Three simulations of evapotranspiration were done with two values of time step,viz 10 min and one day. Inputs to the model were weather data, including directly measured upward and downward radiation, and soil characteristics. Three soils were used for each simulation. Analysis of the results shows that the time step has a direct influence on the prediction of potential evapotranspiration, but a complex interaction of this effect with the soil moisture characteristic, rate of increase of ground cover and bare soil evaporation determines the actual transpiration predicted. The results indicate that as small a time step as possible should be used in the simulation.
Resumo:
This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.