876 resultados para eye-foot-connection
Resumo:
Numerical simulations of eye globes often rely on topographies that have been measured in vivo using devices such as the Pentacam or OCT. The topographies, which represent the form of the already stressed eye under the existing intraocular pressure, introduce approximations in the analysis. The accuracy of the simulations could be improved if either the stress state of the eye under the effect of intraocular pressure is determined, or the stress-free form of the eye estimated prior to conducting the analysis. This study reviews earlier attempts to address this problem and assesses the performance of an iterative technique proposed by Pandolfi and Holzapfel [1], which is both simple to implement and promises high accuracy in estimating the eye's stress-free form. A parametric study has been conducted and demonstrated reliance of the error level on the level of flexibility of the eye model, especially in the cornea region. However, in all cases considered 3-4 analysis iterations were sufficient to produce a stress-free form with average errors in node location <10(-6)mm and a maximal error <10(-4)mm. This error level, which is similar to what has been achieved with other methods and orders of magnitude lower than the accuracy of current clinical topography systems, justifies the use of the technique as a pre-processing step in ocular numerical simulations.
Resumo:
Recent publications have renewed the debate regarding the number of foot compartments. There is also no consensus regarding allocation of individual muscles and communication between compartments. The current study examines the anatomic topography of the foot compartments anew using 32 injections of epoxy-resin and subsequent sheet plastination in 12 cadaveric foot specimens. Six compartments were identified: dorsal, medial, lateral, superficial central, deep forefoot, and deep hindfoot compartments. Communication was evident between the deep hindfoot compartment and the superficial central and deep central forefoot compartments. In the hindfoot, the neurovascular bundles were located in separate tissue sheaths between the central hindfoot compartment and the medial compartment. In the forefoot, the medial and lateral bundles entered the deep central forefoot compartment. The deep central hindfoot compartment housed the quadratus plantae muscle, and after calcaneus fracture could develop an isolated compartment syndrome.
Resumo:
We investigated eye-movements during preschool children’s pictorial recall of seen objects. Thirteen 3- to 4-year-old children completed a perceptual encoding and a pictorial recall task. First, they were exposed to 16 pictorial objects, which were positioned in one of four distinct areas on the computer screen. Subsequently, they had to recall these pictorial objects from memory in order to respond to specific questions about visual details. We found that children spent more time fixating the areas in which the pictorial objects were previously displayed.We conclude that as early as age 3–4 years old, children show specific eye-movements when they recall pictorial contents of previously seen objects.
Resumo:
We previously reported that nuclear grade assignment of prostate carcinomas is subject to a cognitive bias induced by the tumor architecture. Here, we asked whether this bias is mediated by the non-conscious selection of nuclei that "match the expectation" induced by the inadvertent glance at the tumor architecture. 20 pathologists were asked to grade nuclei in high power fields of 20 prostate carcinomas displayed on a computer screen. Unknown to the pathologists, each carcinoma was shown twice, once before a background of a low grade, tubule-rich carcinoma and once before the background of a high grade, solid carcinoma. Eye tracking allowed to identify which nuclei the pathologists fixated during the 8 second projection period. For all 20 pathologists, nuclear grade assignment was significantly biased by tumor architecture. Pathologists tended to fixate on bigger, darker, and more irregular nuclei when those were projected before kigh grade, solid carcinomas than before low grade, tubule-rich carcinomas (and vice versa). However, the morphometric differences of the selected nuclei accounted for only 11% of the architecture-induced bias, suggesting that it can only to a small part be explained by the unconscious fixation on nuclei that "match the expectation". In conclusion, selection of « matching nuclei » represents an unconscious effort to vindicate the gravitation of nuclear grades towards the tumor architecture.
Resumo:
Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors.
Resumo:
Speech is often a multimodal process, presented audiovisually through a talking face. One area of speech perception influenced by visual speech is speech segmentation, or the process of breaking a stream of speech into individual words. Mitchel and Weiss (2013) demonstrated that a talking face contains specific cues to word boundaries and that subjects can correctly segment a speech stream when given a silent video of a speaker. The current study expanded upon these results, using an eye tracker to identify highly attended facial features of the audiovisual display used in Mitchel and Weiss (2013). In Experiment 1, subjects were found to spend the most time watching the eyes and mouth, with a trend suggesting that the mouth was viewed more than the eyes. Although subjects displayed significant learning of word boundaries, performance was not correlated with gaze duration on any individual feature, nor was performance correlated with a behavioral measure of autistic-like traits. However, trends suggested that as autistic-like traits increased, gaze duration of the mouth increased and gaze duration of the eyes decreased, similar to significant trends seen in autistic populations (Boratston & Blakemore, 2007). In Experiment 2, the same video was modified so that a black bar covered the eyes or mouth. Both videos elicited learning of word boundaries that was equivalent to that seen in the first experiment. Again, no correlations were found between segmentation performance and SRS scores in either condition. These results, taken with those in Experiment, suggest that neither the eyes nor mouth are critical to speech segmentation and that perhaps more global head movements indicate word boundaries (see Graf, Cosatto, Strom, & Huang, 2002). Future work will elucidate the contribution of individual features relative to global head movements, as well as extend these results to additional types of speech tasks.