928 resultados para extended
Resumo:
We sought to evaluate the indirect impact of ertapenem use for the treatment of extended-spectrum beta-lactamase-producing Enterobacteriaceae infections in our hospital on the susceptibility of Pseudomonas aeruginosa to imipenem. The use of ertapenem was mandated for treatment of extended-spectrum beta-lactamase-producing Enterobacteriaceae infections in the absence of nonfermenting gram-negative bacilli for 1 year. The use of imipenem was restricted. Imipenem consumption decreased 64.5%. Ertapenem consumption was 42.57 defined daily doses per 1,000 patient-days. None of the 18 P. aeruginosa isolates recovered after ertapenem introduction were imipenem-resistant, compared with 4 of the 20 P. aeruginosa isolates recovered in the previous year.
Resumo:
OBJECTIVES. The purpose of this study was to obtain data on the association of antiphospholipid antibodies with clinical manifestations in childhood and to enable future studies to determine the impact of treatment and long-term outcome of pediatric antiphospholipid syndrome. PATIENTS AND METHODS. A European registry extended internationally of pediatric patients with antiphospholipid syndrome was established as a collaborative project of the European Antiphospholipid Antibodies Forum and Lupus Working Group of the Pediatric Rheumatology European Society. To be eligible for enrollment the patient must meet the preliminary criteria for the classification of pediatric antiphospholipid syndrome and the onset of antiphospholipid syndrome must have occurred before the patient`s 18th birthday. RESULTS. As of December 1, 2007, there were 121 confirmed antiphospholipid syndrome cases registered from 14 countries. Fifty-six patients were male, and 65 were female, with a mean age at the onset of antiphospholipid syndrome of 10.7 years. Sixty (49.5%) patients had underlying autoimmune disease. Venous thrombosis occurred in 72 (60%), arterial thrombosis in 39 (32%), small-vessel thrombosis in 7 (6%), and mixed arterial and venous thrombosis in 3 (2%). Associated nonthrombotic clinical manifestations included hematologic manifestations (38%), skin disorders (18%), and nonthrombotic neurologic manifestations (16%). Laboratory investigations revealed positive anticardiolipin antibodies in 81% of the patients, anti-beta(2)-glycoprotein I antibodies in 67%, and lupus anticoagulant in 72%. Comparisons between different subgroups revealed that patients with primary antiphospholipid syndrome were younger and had a higher frequency of arterial thrombotic events, whereas patients with antiphospholipid syndrome associated with underlying autoimmune disease were older and had a higher frequency of venous thrombotic events associated with hematologic and skin manifestations. CONCLUSIONS. Clinical and laboratory characterization of patients with pediatric antiphospholipid syndrome implies some important differences between antiphospholipid syndrome in pediatric and adult populations. Comparisons between children with primary antiphospholipid syndrome and antiphospholipid syndrome associated with autoimmune disease have revealed certain differences that suggest 2 distinct subgroups. Pediatrics 2008; 122: e1100-e1107
Resumo:
The rat posterodorsal medial amygdala (MePD) is a brain area in which gonadal hormones induce notable plastic effects in the density of dendritic spines. Dendritic spines are post-synaptic specializations whose shape and spacing change neuronal excitability. Our aim was to obtain new data on the dendritic spines morphology and density from MePD neurons using the carbocyanine dye Dil under confocal microscopy. In adult male rats, the dendritic spine density of the medial branches of the left MePD (mean +/- SD) was 1.15 +/- 0.67 spines/dendritic mu m. From the total sampled, approximately 53% of the spines were classified as thin, 22.5% as ""mushroom-like"", and 21.5% as stubby/wide. Other spine shapes (3%) included those ramified, with a filopodium-like or a gemule appearance, and others with a protruding spinule. Additional experiment joining Dil and synaptophysin (a pre-synaptic protein) labeling suggested synaptic sites on dendritic shafts and spines. Dendritic spines showed synaptophysin puncta close to their head and neck, although some spines had no evident labeled puncta on them or, conversely, multiple puncta appeared upon one spine. These results advance previous light microscopy results by revealing features and complexities of the dendritic spines at the same time that give new insight on the possible synaptic organization of the adult rat MePD. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Neutrophilic granulocytes play a major role in the initiation and resolution of the inflammatory response, and demonstrate significant transcriptional and translational activity. Although much was known about neutrophils prior to the introduction of proteomics, the use of MS-based methodologies has provided an unprecedented tool to confirm and extend previous findings. In the present study, we performed a Gel-LC-MS/MS analysis of neutrophil detergent insoluble and whole cell lysate fractions of resting neutrophils. We achieved a set of identifications through the use of high-resolution mass spectrometry and validation of its data. We identified a total of 1249 proteins with a wide range of intensities from both detergent-insoluble and whole cell lysate fractions, allowing a mapping of proteins such as those involved in intracellular transport (Rab and Sec family proteins) and cell signaling (S100 proteins). These results represent the most comprehensive proteomic characterization of resting human neutrophils to date, and provide important information relevant for further studies of the immune system in health and disease. The methods applied here can be employed to help us understand how neutrophils respond to various physiologic and pathophysiologic conditions and could be extended to protein quantitation after cell activation.
Resumo:
The morphologic appearance and clinical behavior of the human urinary bladder papillary transitional cell carcinoma (TCC) probably result from a complex interaction between carcinogenic insults and host resistance during the patient`s life. While the main recognized risk factors are of environmental origin (e.g. smoking), relatively little information exists about the susceptibility to TCC development. The human leukocyte antigen G (HLA-G) molecule plays an important role in immune response regulation and has been implicated in the inhibition of the cytolytic function of natural killer and cytotoxic T cells. Several lines of evidence indicate that HLA-G polymorphisms influence the expression level and production of different HLA-G isoforms. The aim of this study was to explore a possible influence of the HLA-G polymorphism on the susceptibility to urinary bladder TCC development and progression in smokers and nonsmokers Brazilian subjects. The HLA-G locus was found to be associated with susceptibility to TCC development and progression. The G*0104 allelic group (specially the G*010404 allele) and the G*0103 allele were associated with a tobacco-dependent influence on TCC development. The G*0104 group was associated with progression to high-grade tumors, irrespective of smoking habit, while the G*0103 allele was associated to high-grade tumor only in smoking patients. Our results are an evidence that the HLA-G locus itself, or as part of an extended haplotype encompassing this chromosome region (particularly the HLA-A given the high linkage disequilibrium observed between them in this data series), may be associated with TCC susceptibility and tumor progression, suggesting a tobacco-dependent influence of these polymorphisms.
Resumo:
Aims: Many fundamental pharmacological studies in pain and inflammation have been performed on rats. However, the pharmacological findings were generally not extended to other species in order to increase their predictive therapeutic value. We studied acute and chronic inflammatory nociceptive sensitisation of mouse hind paws by prostaglandin E(2) (PGE(2)) or dopamine (DA), as previously described in rats. We also investigated the participation of the signalling pathways in acute and persistent sensitisation. Main methods: Mechanical sensitisation (hypernociception) induced by intraplantar administrations of PGE(2) or DA was evaluated with an electronic pressure meter. The signalling pathways were pharmacologically investigated with the pre-administration of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), protein kinase C epsilon (PKC epsilon), and the extracellular signal-related kinase (ERK) inhibitors. Key findings: Single or 14 days of successive intraplantar injections of PGE(2) or DA-induced acute and persistent hypernociception (lasting for more than 30 days), respectively. The involvement of AC, PKA or PKC epsilon was observed in the acute hypernociception induced by PGE(2), while PKA or PKC epsilon were continuously activated during the period of persistent hypernociception. The acute hypernociception induced by DA involves activation of ERK, PKC epsilon, AC or PKA, while persistent hypernociception implicated ERK activation, but not PKA, PKC epsilon or AC. Significance: In mice, acute and persistent paw sensitisation involves the different activation of kinases, as previously described for rats. This study opens the possibility of comparing pharmacological approaches in both species to further understand acute and chronic inflammatory sensitisation, and possibly associated genetic manipulations. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Molkov YI, Zoccal DB, Moraes DJ, Paton JF, Machado BH, Rybak IA. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. J Neurophysiol 105: 3080-3091, 2011. First published April 6, 2011; doi:10.1152/jn.00070.2011.-Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.
Resumo:
Recent evidence has shown that the serotonergic mechanism of the lateral parabrachial nucleus (LPBN) participates in the regulation of renal and hormonal responses to isotonic blood volume expansion (BVE). We investigated the BVE-induced Fos activation along forebrain and hindbrain nuclei and particularly within the serotonergic clusters of the raphe system that directly project to the LPBN. We also examined whether there are changes in the concentration of serotonin (5HT) within the raphe nucleus in response to the same stimulus. With this purpose, we analyzed the cells doubly labeled for Fos and Fluorogold (FG) following BVE (NaCl 0.15 M, 2 ml/100 g b.w., 1 min) 7 days after FG injection into the LPBN. Compared with the control group, blood volume-expanded rats showed a significant greater number of Fos-FG double-labeled cells along the nucleus of the solitary tract, locus coeruleus, hypothalamic paraventricular nucleus, central extended amygdala complex, and dorsal raphe nucleus (DRN) cells. Our study also showed an increase in the number of serotonergic DRN neurons activated in response to isotonic BVE. We also observed decreased levels of 5HT and its metabolite 5-hydroxyindoleacetic acid (measured by high-pressure liquid chromatography) within the raphe nucleus 15 min after BVE. Given our previous evidence on the role of the serotonergic system in the LPBN after BVE, the present morphofunctional findings suggest the existence of a key pathway (DRN-LPBN) that may control BVE response through the modulation of 5HT release. (c) 2008 Wiley-Liss, Inc.
Resumo:
Oxidative stress plays an important role in the development of cognitive impairment in sepsis. Here we assess the effects of acute and extended administration of cannabidiol (CBD) on oxidative stress parameters in peripheral organs and in the brain, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and perforation (CLP). To this aim, male Wistar rats underwent either sham operation or CLP. Rats subjected to CLP were treated by intraperitoneal injection with ""basic support"" and CBD (at 2.5, 5, or 10 mg/kg once or daily for 9 days after CLP) or vehicle. Six hours after CLP (early times), the rats were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus, striatum, and cortex) were obtained and assayed for thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. On the 10th day (late times), the rats were submitted to the inhibitory avoidance task. After the test, the animals were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus) were obtained and assayed for TBARS formation and protein carbonyls. The acute and extended administration of CBD at different doses reduced TBARS and carbonyl levels in some organs and had no effects in others, ameliorated cognitive impairment, and significantly reduced mortality in rats submitted to CLP. Our data provide the first experimental demonstration that CBD reduces the consequences of sepsis induced by CLP in rats, by decreasing oxidative stress in peripheral organs and in the brain, improving impaired cognitive function, and decreasing mortality. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The investigation was centered on the morphological features of the conjunctiva-cornea transition (limbus) of the rabbit eye and the proliferative behavior of its epithelium. The eyes were processed for examination with light and electron microscopy, as well as for autoradiography after intravitreal injection of [H-3]thymidine ([H-3]TdR). At the sites of extraocular muscle insertion, the vascularization of the stroma extended to the peripheral cornea, and the limbal epithelium was thin with its basal stratum made up by clear cuboidal cells. In between the muscle insertions, the cuboidal clear cells, as well as the stroma blood vessels; were scarce. At the light microscope level, the basement membrane was distinct in the cornea but not in the limbus or the conjunctiva. Autoradiographs demonstrated that, at the limbus, the basal cells migrated very quickly to the suprabasal region and remained there up to the 28-day interval. Labeled cells were identified in all epithelial layers of the cornea, including the basal one, at 21 and 28 days but not in the limbal basal clear cells. The rate of renewal of conjunctival epithelium was similar to that observed for the transition with scarce clear cells. The high-resolution autoradiographs demonstrated that the basal cuboidal clear limbal cells exhibit a quick renewal and that they are not label-retaining cells. These latter ones were detected all over the corneal epithelium and in the suprabasal layers of the limbus up to 28 days, in physiological conditions, without the need of stimulation by damage to the corneal epithelium.
Resumo:
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host`s local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick`s blood meal. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Anderson theorizes that development of the aquaculture of a species of fish (also captured in an open-access fishery) favours the conservation of its wild stocks, if competitive market conditions prevail. However, this theory is shown to be subject to significant limitations. While this is less so within his model, it is particularly so in an extended one outlined here. The extended model allows for the possibility that aquaculture development can impact negatively on wild stocks thereby shifting the supply curve of the capture fishery, or raise the demand for the fish species subject both to aquaculture and capture. Such development can threaten wild stocks and their biodiversity. While aquaculture development could in principle have no impact on the biodiversity of wild stocks or even raise aquatic biodiversity overall, its impact in the long-term probably will be one of reducing aquatic diversity both in the wild and overall.
Resumo:
Australia’s transition to the 21st century has been marked by an extended period of economic prosperity unmatched for several decades, but one in which a series of question marks are being raised in three principal areas: in relation to the environment, the social well-being of the population, and the future path of economic development. The first concern, which is of primary interest in this report, relates to the physical environment of cities and their surrounding regions, and the range of pressures exerted by population and human activity. The report begins by noting the increasing divergence of the prime indicator of national economic performance—gross domestic product (GDP)—from the Genuine Progress Indicator (GPI). GPI is a new experimental measure of sustainable development that accommodates factors currently unaccounted for in GDP, such as income distribution, value of household work, cost of unemployment, and various other social and environmental costs. The divergence of these two indicators in recent decades suggests that Australia’s growth has been heavily dependent on the draw-down of the nation’s stocks of capital assets (its infrastructure), its human and social capital, and its natural capital (Hamilton 1997).
Resumo:
During the process of maturation in the oviduct, canine oocytes in the germinal vesicle stage are exposed to decreasing levels of estradiol-17 beta and increasing levels of progesterone. However, hormone concentrations in the microenvironments in which they act are higher than serum concentrations. Therefore, the aim of the present study was to compare the meiotic competence of canine oocytes harvested from anestrous bitches in culture medium containing high concentrations (20 mu g ml(-1)) of estradiol-17 beta and/or progesterone in association to gonadotropins (luteinizing hormone and follicle-stimulating hormone) using three different maturation periods (48, 72, and 96 h). Oocytes were cultured in tissue culture medium (TCM-199) and arranged in four experimental groups: group control, group E2 (estradiol-17 beta), group P4 (progesterone), and group E2 + P4. Regardless of the maturation period, groups P4 and E2 + P4 presented statistically higher rate of germinal vesicle breakdown oocytes compared to the group control and group E2. There were no significant differences among groups on germinal vesicle, metaphase I, metaphase II, and degenerated or unidentifiable oocytes rates. The mean percentage of metaphase II oocytes was higher at 96 h when compared to 72 h. Results of the present research indicate no influence of estradiol-17 beta supplementation, unless in association with progesterone. There is an evidence of the positive effect of progesterone on germinal vesicle breakdown. Results also showed that extended periods of in vitro maturation affect positively maturation rates to metaphase II of low competent oocytes harvested from anestrous bitches, independent of the maturation media. In conclusion, high concentrations of steroids, especially progesterone, have positive effect on in vitro oocyte maturation when the oocytes are derived from the anestrous status.