932 resultados para emitting phosphors
Resumo:
Vertical-cavity surface-emitting lasers (VCSELs) and microlenses can be used to implement free space optical interconnects (FSOIs) which do not suffer from the bandwidth limitations inherent in metallic interconnects. A comprehensive link equation describing the effects of both optical and electrical noise is introduced. We have evaluated FSOI performance by examining the following metrics: the space-bandwidth product (SBP), describing the density of channels and aggregate bandwidth that can be achieved, and the carrier-to-noise ratio (CNR), which represents the relative strength of the carrier signal. The mode expansion method (MEM) was used to account for the primary cause of optical noise: laser beam diffraction. While the literature commonly assumes an ideal single-mode laser beam, we consider the experimentally determined multimodal structure of a VCSEL beam in our calculations. It was found that maximum achievable interconnect length and density for a given CNR was significantly reduced when the higher order transverse modes were present in Simulations. However, the Simulations demonstrate that free-space optical interconnects are still a suitable solution for the communications bottleneck, despite the adverse effects introduced by transverse modes.
Resumo:
A system of cascaded qubits interacting via the one-way exchange of photons is studied. While for general operating conditions the system evolves to a superposition of Bell states (a dark state) in the long-time limit, under a particular resonance condition no steady state is reached within a finite time. We analyze the conditional quantum evolution (quantum trajectories) to characterize the asymptotic behavior under this resonance condition. A distinct bimodality is observed: for perfect qubit coupling, the system either evolves to a maximally entangled Bell state without emitting photons (the dark state) or executes a sustained entangled-state cycle-random switching between a pair of Bell states while emitting a continuous photon stream; for imperfect coupling, two entangled-state cycles coexist, between which a random selection is made from one quantum trajectory to another.
Resumo:
The laser diode (LD) is a unique light source that can efficiently produce all radiant energy within the narrow wavelength range used most effectively by a photosynthetic microorganism. We have investigated the use of a single type of LID for the cultivation of the well-studied anoxygenic photosynthetic bacterium, Rhodobacter capsulatus (Rb. capsulatus). An array of vertical-cavity surface-emitting lasers (VCSELs) was driven with a current of 25 mA, and delivered radiation at 860 nm with 0.4 nm linewidth. The emitted light was found to be a suitable source of radiant energy for the cultivation of Rb. capsulatus. The dependence of growth rate on incident irradiance was quantified. Despite the unusual nearly monochromatic light source used in these experiments, no significant changes in the pigment composition and in the distribution of bacteriochlorophyll between LHII and LHI-RC were detected in bacterial cells transferred from incandescent light to laser light. We were also able to show that to achieve a given growth rate in a light-limited culture, the VCSEL required only 30% of the electricity needed by an incandescent bulb, which is of great significance for the potential use of laser-devices in biotechnological applications and photobioreactor construction. (c) 2006 Wiley Periodicals, Inc.
Resumo:
We optimized the emission efficiency from a microcavity OLEDs consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq(3)) as emitting and electron transporting layer. LiF/Al was considered as a cathode, while metallic Ag anode was used. TiO2 and Al2O3 layers were stacked on top of the cathode to alter the properties of the top mirror. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that for certain TiO2 and Al2O3 layer thicknesses, light output is enhanced as a result of the increase in both the reflectance and transmittance of the top mirror. Once the optimum structure has been determined, the microcavity OLED devices can be fabricated and characterized, and comparisons between experiments and theory can be made.
Resumo:
Conventional detection scheme for self-mixing sensors uses an integrated photodiode within the laser package to monitor the self mixing signal. This arrangement can be simplified by directly obtaining the self-mixing signals across the laser diode itself and omitting the photodiode. This work reports on a Vertical-Cavity Surface-Emitting Laser (VCSEL) based selfmixing sensor using the laser junction voltage to obtain the selfmixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity and significant increase in bandwidth favoring high speed modulation. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory.
Resumo:
We report on the effect of the replacement of the conventional ITO anode with the semitransparent metallic material on the performance of microcavity OLEDs. We performed comprehensive simulations of the emission from microcavity OLEDs consisting of widely used organic materials, N,N′-di(naphthalene-1- yl)-N,N′-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer. Silver and LiF/Al were considered as a cathode, while metallic (Au and Ag) anode was used and simulations were performed on devices with both the metallic and conventional ITO anode. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that the metallic anode enhances light output and that optimum emission from a microcavity OLED is achieved when the position of the recombination region is aligned with the antinode of the standing wave inside the cavity. The microcavity OLED devices with Ag/Ag and Ag/Au mirrors were fabricated and characterized. The experimental results have been compared to the simulations and the influence of the different anode, emission region width and position on the performance of microcavity OLEDs was discussed.
Resumo:
The following topics were dealt with: semiconductor growth (MBE, PECVD, MOCVD, MOVPE) and characterizations; high-electron mobility transistors (HEMTs); microcavity organic light emitting diode (MOLED); semiconductor superlattices; photodiode arrays; MEMS structures; lithography;semiconductor lasers; semiconductor optical amplifiers; surface treatment and annealing
Resumo:
New photonic crystal fiber designs are presented and numerically investigated in order to improve the state of art of high power fiber lasers. The focus of this work is targeted on the region of 2 μm laser emission, which is of high interest due to its eye-safe nature and due to the large amount of applications permitted. Thulium doped fiber amplifiers are suitable for emitting in this region. Different fiber designs have been proposed, both flexible and rod-type, with the aim to enlarge mode area while maintaining robust single mode operation. The analysis of thermal effects, caused by the high thulium quantum defect, have been taken in consideration. Solutions to counteract issues derived by detrimental thermal effects have been implemented.
Resumo:
This thesis presents a detailed, experiment-based study of generation of ultrashort optical pulses from diode lasers. Simple and cost-effective techniques were used to generate high power, high quality optical short pulses at various wavelength windows. The major achievements presented in the thesis is summarised as follows. High power pulses generation is one of the major topics discussed in the thesis. Although gain switching is the simplest way for ultrashort pulse generation, it proves to be quite effective to deliver high energy pulses on condition that the pumping pulses with extremely fast rising time and high enough amplitude are applied on specially designed pulse generators. In the experiment on a grating-coupled surface emitting laser (GCSEL), peak power as high as 1W was achieved even when its spectral bandwidth was controlled within 0.2nm. Another experiment shows violet picosecond pulses with peak power as high as 7W was achieved when the intensive electrical pulses were applied on optimised DC bias to pump on InGaN violet diode laser. The physical mechanism of this phenomenon, as we considered, may attributed to the self-organised quantum dots structure in the laser. Control of pulse quality, including spectral quality and temporal profile, is an important issue for high power pulse generation. The ways to control pulse quality described in the thesis are also based on simple and effective techniques. For instance, GCSEL used in our experiment has a specially designed air-grating structure for out-coupling of optical signals; hence, a tiny flat aluminium mirror was placed closed to the grating section and resulted in a wavelength tuning range over 100nm and the best side band suppression ratio of 40dB. Self-seeding, as an effective technique for spectral control of pulsed lasers, was demonstrated for the first time in a violet diode laser. In addition, control of temporal profile of the pulse is demonstrated in an overdriven DFB laser. Wavelength tuneable fibre Bragg gratings were used to tailor the huge energy tail of the high power pulse. The whole system was compact and robust. The ultimate purpose of our study is to design a new family of compact ultrafast diode lasers. Some practical ideas of laser design based on gain-switched and Q-switched devices are also provided in the end.
Resumo:
Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures. © 2011 American Chemical Society.
Resumo:
This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 µm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.
Resumo:
Purpose To assess the validity and repeatability of the Aston Halometer. Setting University clinic, United Kingdom. Design Prospective, repeated-measures experimental study. Methods The halometer comprises a bright light-emitting-diode (LED) glare source in the center of an iPad4. Letters subtending 0.21° (∼0.3 logMAR) were moved centrifugally from the LED in 0.05 degree steps in 8 orientations separated by 45 degrees for each of 4 contrast levels (1000, 500, 100, and 25 Weber contrast units [Cw]) in random order. Bangerter occlusion foils were inserted in front of the right eye to simulate monocular glare conditions in 20 subjects (mean age 27.7 ± 3.1 years). Subjects were positioned 2 meters from the screen in a dark room with the iPad controlled from an iPhone via Bluetooth operated by the researcher. The C-Quant straylight meter was also used with each of the foils to measure the level of straylight over the retina. Halometry and straylight repeatability was assessed at a second visit. Results Halo size increased with the different occlusion foils and target contrasts (F = 29.564, P <.001) as expected and in a pattern similar to straylight measures (F = 80.655, P <0.001). Lower contrast letters showed better sensitivity but larger glare-obscured areas, resulting in ceiling effects caused by the screen's field-of-view, with 500 Cw being the best compromise. Intraobserver and interobserver repeatability of the Aston Halometer was good (500Cw: 0.84 to 0.93 and 0.53 to 0.73) and similar to the straylight meter. Conclusion The halometer provides a sensitive, repeatable way of quantifying a patient-recognized form of disability glare in multiple orientations to add objectivity to subjectively reported discomfort glare.
Resumo:
Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.
Resumo:
Photoreactive liposomes have been exploited as a means of developing 3D tissue constructs. Liposomes formulated using the photosensitive lipid 1,2-bis(4-(n-butyl)phenylazo-4′-phenylbutyroyl)phosphatidylcholine (Bis Azo PC), which undergoes conformational change on stimulation with long wavelength ultraviolet light, were prepared with entrapped CaCl2 before being incorporated into a 4% alginate solution. It was shown that stimulation of the photosensitive lipid using a light emitting diode (LED) (peak emission at 385 nm, dose equivalent to 9 mJ/cm2) caused the release of liposome-entrapped CaCl2, resulting in cross-linking of the alginate solution and immobilisation of bone-derived cells over a range of seeding densities, approximately 97% of which remained viable for periods of up to 14 days in culture. Entrapment volumes of a variety of liposome types were evaluated and interdigitating fusion vesicles were identified as having the highest payload (24%), however the inclusion of cholesterol as a means of shifting Bis Azo PC sensitivity into the visible light wavelengths resulted in an approximately 10-fold reduction in calcium entrapment. This application of light-sensitised liposomes offers the potential to create complex tissue engineering substrates containing cells immobilised in precise locations, in contrast with substrates onto which cells are seeded post-production. © 2007 Elsevier B.V. All rights reserved.
Resumo:
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).