1000 resultados para electronic contracting
Computational modeling techniques for reliability of electronic components on printed circuit boards
Resumo:
This paper describes modeling technology and its use in providing data governing the assembly and subsequent reliability of electronic chip components on printed circuit boards (PCBs). Products, such as mobile phones, camcorders, intelligent displays, etc., are changing at a tremendous rate where newer technologies are being applied to satisfy the demands for smaller products with increased functionality. At ever decreasing dimensions, and increasing number of input/output connections, the design of these components, in terms of dimensions and materials used, is playing a key role in determining the reliability of the final assembly. Multiphysics modeling techniques are being adopted to predict a range of interacting physics-based phenomena associated with the manufacturing process. For example, heat transfer, solidification, marangoni fluid flow, void movement, and thermal-stress. The modeling techniques used are based on finite volume methods that are conservative and take advantage of being able to represent the physical domain using an unstructured mesh. These techniques are also used to provide data on thermal induced fatigue which is then mapped into product lifetime predictions.
Resumo:
The electronics industry and the problems associated with the cooling of microelectronic equipment are developing rapidly. Thermal engineers now find it necessary to consider the complex area of equipment cooling at some level. This continually growing industry also faces heightened pressure from consumers to provide electronic product miniaturization, which in itself increases the demand for accurate thermal management predictions to assure product reliability. Computational fluid dynamics (CFD) is considered a powerful and almost essential tool for the design, development and optimization of engineering applications. CFD is now widely used within the electronics packaging design community to thermally characterize the performance of both the electronic component and system environment. This paper discusses CFD results for a large variety of investigated turbulence models. Comparison against experimental data illustrates the predictive accuracy of currently used models and highlights the growing demand for greater mathematical modelling accuracy with regards to thermal characterization. Also a newly formulated low Reynolds number (i.e. transitional) turbulence model is proposed with emphasis on hybrid techniques.
Resumo:
This paper will discuss Computational Fluid Dynamics (CFD) results from an investigation into the accuracy of several turbulence models to predict air cooling for electronic packages and systems. Also new transitional turbulence models will be proposed with emphasis on hybrid techniques that use the k-ε model at an appropriate distance away from the wall and suitable models, with wall functions, near wall regions. A major proportion of heat emitted from electronic packages can be extracted by air cooling. This flow of air throughout an electronic system and the heat extracted is highly dependent on the nature of turbulence present in the flow. The use of CFD for such investigations is fast becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However turbulence models remain a key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt fluctuations experienced by the turbulent energy and other parameters located at near wall regions and shear layers a particularly fine computational mesh is necessary which inevitably increases the computer storage and run-time requirements. The PHYSICA Finite Volume code was used for this investigation. With the exception of the k-ε and k-ω models which are available as standard within PHYSICA, all other turbulence models mentioned were implemented via the source code by the authors. The LVEL, LVEL CAP, Wolfshtein, k-ε, k-ω, SST and kε/kl models are described and compared with experimental data.
Resumo:
A major percentage of the heat emitted from electronic packages can be extracted by air cooling whether by means of natural or forced convection. This flow of air throughout an electronic system and the heat extracted is highly dependable on the nature of turbulence present in the flow field. This paper will discuss results from an investigation into the accuracy of turbulence models to predict air cooling for electronic packages and systems.
Resumo:
The aim of integrating computational mechanics (FEA and CFD) and optimization tools is to speed up dramatically the design process in different application areas concerning reliability in electronic packaging. Design engineers in the electronics manufacturing sector may use these tools to predict key design parameters and configurations (i.e. material properties, product dimensions, design at PCB level. etc) that will guarantee the required product performance. In this paper a modeling strategy coupling computational mechanics techniques with numerical optimization is presented and demonstrated with two problems. The integrated modeling framework is obtained by coupling the multi-physics analysis tool PHYSICA - with the numerical optimization package - Visua/DOC into a fuJly automated design tool for applications in electronic packaging. Thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and life-time under thermal cycling. Also a thermal management design based on multi-physics analysis with coupled thermal-flow-stress modeling is discussed. The Response Surface Modeling Approach in conjunction with Design of Experiments statistical tools is demonstrated and used subsequently by the numerical optimization techniques as a part of this modeling framework. Predictions for reliable electronic assemblies are achieved in an efficient and systematic manner.
Resumo:
Computational Fluid Dynamics (CFD) is gradually becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However the mathematical modelling of the erratic turbulent motion remains the key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt changes in the turbulent energy and other parameters situated at near wall regions a particularly fine mesh is necessary which inevitably increases the computer storage and run-time requirements. Turbulence modelling can be considered to be one of the three key elements in CFD. Precise mathematical theories have evolved for the other two key elements, grid generation and algorithm development. The principal objective of turbulence modelling is to enhance computational procedures of efficient accuracy to reproduce the main structures of three dimensional fluid flows. The flow within an electronic system can be characterized as being in a transitional state due to the low velocities and relatively small dimensions encountered. This paper presents simulated CFD results for an investigation into the predictive capability of turbulence models when considering both fluid flow and heat transfer phenomena. Also a new two-layer hybrid kε / kl turbulence model for electronic application areas will be presented which holds the advantages of being cheap in terms of the computational mesh required and is also economical with regards to run-time.
Resumo:
The domain decomposition method is directed to electronic packaging simulation in this article. The objective is to address the entire simulation process chain, to alleviate user interactions where they are heavy to mechanization by component approach to streamline the model simulation process.
Resumo:
This paper details a modelling approach for assessing the in-service (field) reliability and thermal fatigue life-time of electronic package interconnects for components used in the assembly of an aerospace system. The Finite Element slice model of a Plastic Ball Grid Array (PBGA) package and suitable energy based damage models for crack length predictions are used in this study. Thermal fatigue damage induced in tin-lead solder joints are investigated by simulating the crack growth process under a set of prescribed field temperature profiles that cover the period of operational life. The overall crack length in the solder joint for all different thermal profiles and number of cycles for each profile is predicted using a superposition technique. The effect of using an underfill is also presented. A procedure for verifying the field lifetime predictions for the electronic package by using reliability assessment under Accelerated Thermal Cycle (ATC) testing is also briefly outlined.
Resumo:
Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.
Resumo:
This paper is intended to provide a general review of the current capabilities of turbulence models within the specific area of electronic cooling. The work discussed in this paper is aimed at examining currently available turbulence models and the formulation of a new two-layer hybrid kElki model which is specifically designed for electronic application areas. A classic backward facing step configuration will be used to evaluate the performance of the turbulence models in the prediction of separated flows. The preliminary results suggest that the hybrid ke/kl turbulence model is a promising zonal model to pursue.
Resumo:
The fabrication, assembly and testing of electronic packaging can involve complex interactions between physical phenomena such as temperature, fluid flow, electromagnetics, and stress. Numerical modelling and optimisation tools are key computer-aided-engineering technologies that aid design engineers. This paper discusses these technologies and there future developments.
Resumo:
This paper discusses an optimisation based decision support system and methodology for electronic packaging and product design and development which is capable of addressing in efficient manner specified environmental, reliability and cost requirements. A study which focuses on the design of a flip-chip package is presented. Different alternatives for the design of the flip-chip package are considered based on existing options for the applied underfill and volume of solder material used to form the interconnects. Variations in these design input parameters have simultaneous effect on package aspects such as cost, environmental impact and reliability. A decision system for the design of the flip-chip that uses numerical optimisation approach is used to identify the package optimal specification which satisfies the imposed requirements. The reliability aspect of interest is the fatigue of solder joints under thermal cycling. Transient nonlinear finite element analysis (FEA) is used to simulate the thermal fatigue damage in solder joints subject to thermal cycling. Simulation results are manipulated within design of experiments and response surface modelling framework to provide numerical model for reliability which can be used to quantify the package reliability. Assessment of the environmental impact of the package materials is performed by using so called Toxic Index (TI). In this paper we demonstrate the evaluation of the environmental impact only for underfill and lead-free solder materials. This evaluation is based on the amount of material per flip-chip package. Cost is the dominant factor in contemporary flip-chip packaging industry. In the optimisation based decision support system for the design of the flip-chip package, cost of materials which varies as a result of variations in the design parameters is considered.
Resumo:
Micro-electronic displays are indispensible devices used in high performance applications such as aerospace, medical, marine and industrial sectors.These devices provide an interface to real time mission critical devices and therefore require good optical visual performance and high reliability, all this within varied and challenging environments.
Resumo:
Micro-electronic displays are sensitive devices and its performance is easily affected by external environmental factors. To enable the display to perform in extreme conditions, the device must be structurally strengthened, the effects of this packaging process was investigated. A thermo-mechanical finite element analysis was used to discover potential problems in the packaging process and to improve the overall design of the device. The main concern from the analysis predicted that displacement of the borosilicate glass and the Y stress of the adhesive are important. Using this information a design which reduced the variation of displacement and kept the stress to a minimum was suggested