984 resultados para electrical heating elements
Resumo:
Milling is an energy intensive process and it is considered as one of the most energy inefficient processes. Electrical and mechanical shock loading can be used to develop a pre-treatment methodology to enhance energy efficiency of comminution and liberation of minerals. Coal and Banded Hematite Jasper (BHJ) Iron ores samples were taken for the study to know the effect of shock loading. These samples were exposed to 5 electric shocks of 300 kV using an electric shock loading device. A diaphragmless shock tube was used to produce 3 and 6 compressed air shocks of Mach number 2.12 to treat the coal and Iron ore samples. Microscopic, comminution and liberation studies were carried out to compare the effectiveness of these approaches. It was found that electric shock loading can comminute the coal samples more effectively and increases the yield of carbon by 40% at 1.6 gm/cc density over the untreated coal samples. Mechanical shock loading showed improved milling performance for both the materials and 12.90% and 8.1% reduction in the D-80 of the particles was observed during grinding for treated samples of coal and iron, respectively. Liberation of minerals in BHJ Iron ore was found unaffected due to low intensity of the mechanical shock waves and non conductivity of minerals. Compressed air based shock loading is easier to operate than electrical shock loading and it needs to be explored further to improve the energy efficacy of comminution. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present a computational study on the impact of line defects on the electronic properties of monolayer MoS2. Four different kinds of line defects with Mo and S as the bridging atoms, consistent with recent theoretical and experimental observations, are considered herein. We employ the density functional tight-binding (DFTB) method with a Slater-Koster-type DFTB-CP2K basis set for evaluating the material properties of perfect and the various defective MoS2 sheets. The transmission spectra are computed with a DFTB-non-equilibrium Green's function formalism. We also perform a detailed analysis of the carrier transmission pathways under a small bias and investigate the phase of the transmission eigenstates of the defective MoS2 sheets. Our simulations show a two to four fold decrease in carrier conductance of MoS2 sheets in the presence of line defects as compared to that for the perfect sheet.
Resumo:
InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.
Resumo:
Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150 degrees C and then to a stable hexagonal structure at high temperatures (>= 250 degrees C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)(1-x)Se-x thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150 degrees C. The intermediate NaCl structure has been observed only for x, 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)(1-x)Se-x films are better candidates for phase change memory applications.
Resumo:
Electrical resistance of both the electrodes of a lead-acid battery increases during discharge due to formation of lead sulfate, an insulator. Work of Metzendorf 1] shows that resistance increases sharply at about 65% conversion of active materials, and battery stops discharging once this critical conversion is reached. However, these aspects are not incorporated into existing mathematical models. Present work uses the results of Metzendorf 1], and develops a model that includes the effect of variable resistance. Further, it uses a reasonable expression to account for the decrease in active area during discharge instead of the empirical equations of previous work. The model's predictions are compared with observations of Cugnet et al. 2]. The model is as successful as the non-mechanistic models existing in literature. Inclusion of variation in resistance of electrodes in the model is important if one of the electrodes is a limiting reactant. If active materials are stoichiometrically balanced, resistance of electrodes can be very large at the end of discharge but has only a minor effect on charging of batteries. The model points to the significance of electrical conductivity of electrodes in the charging of deep discharged batteries. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We report here the investigations on the size dependent variation of magnetic properties of nickel ferrite nanoparticles. Nickel ferrite nanoparticles of different sizes (14 to 22 nm) were prepared by the sol-gel route at different annealing temperatures. They are characterized by TGA-DTA, XRD, SEM, TEM and Raman spectroscopy techniques for the confirmation of the temperature of phase formation, thermal stability, crystallinity, morphology and structural status of the nickel ferrite nanoparticles. The magnetization studies revealed that the saturation magnetization (M-s), retentivity (M-r) increase, while coercivity (H-c) and anisotropy (K-eff) decrease as the particle size increases. The observed value of M-s is found to be relatively higher for a particle size of 22 nm. In addition, we have estimated the magnetic domain size using magnetic data and correlated to the average particle size. The calculated magnetic domain size is closely matching with the particle size estimated from XRD. Impedance spectroscopy was employed to study the samples in an equivalent circuit to understand their transport phenomena. It shows that nickel ferrite nanoparticles exhibit a non-Debye behavior with increasing particle size due to the influence of increasing disorders, surface effects, grain size and grain boundaries, etc. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
Flame particles are mathematical points comoving with a reacting isoscalar surface in a premixed flame. In this Rapid Communication, we investigate mean square pair separation of flame particles as a function of time from their positions tracked in two sets of direct numerical simulation solutions of H-2-air turbulent premixed flames with detailed chemistry. We find that, despite flame particles and fluid particles being very different concepts, a modified Batchelor's scaling of the form
Resumo:
We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on squeeze film modelling, however only a few studies address the coupled fluid elasticity problem. The majority of the studies that account for the plate elasticity coupled with the fluid equation, either use approximate mode shapes for the plate or use iterative solution strategies. In an earlier work we presented a single step coupled methodology using only one type of displacement based element to solve the coupled problem. The displacement based finite element models suffer from locking issues when it comes to modelling very thin structures with the lateral dimensions much larger than the plate thickness as is typical in MEMS devices with squeeze film effects. In this work we present another coupled formulation where we have used hybrid elements to model the structural domain. The numerical results show a huge improvement in convergence and accuracy with coarse hybrid mesh as compared to displacement based formulations. We further compare our numerical results with experimental data from literature and find them to be in good accordance.
Resumo:
Phase-change cooling technique is a suitable method for thermal management of electronic equipment subjected to transient or cyclic heat loads. The thermal performance of a phase-change based heat sink under cyclic heat load depends on several design parameters, namely, applied heat flux, cooling heat transfer coefficient, thermophysical properties of phase-change materials (PCMs), and physical dimensions of phase-change storage system during melting and freezing processes. A one-dimensional conduction heat transfer model is formulated to evaluate the effectiveness of preliminary design of practical PCM-based energy storage units. In this model, the phase-change process of the PCM is divided into melting and solidification subprocesses, for which separate equations are written. The equations are solved sequentially and an explicit closed-form solution is obtained. The efficacy of analytical model is estimated by comparing with a finite-volume-based numerical solution for both transient and cyclic heat loads.
Resumo:
Structural variations of different Z pi-aromatic three-membered ring systems of main group elements, especially group 14 and 13 elements as compared to the classical description of cyclopropenyl cation has been reviewed in this article. The structures of heavier analogues as well as group 13 analogues of cyclopropenyl cation showed an emergence of dramatic structural patterns which do not conform, to the general norms of carbon chemistry. Isolobal analogies between the main group fragments have been efficiently used to explain the peculiarities observed in these three-membered ring systems.
Resumo:
Spatial modulation (SM) is attractive for multiantenna wireless communications. SM uses multiple transmit antenna elements but only one transmit radio frequency (RF) chain. In SM, in addition to the information bits conveyed through conventional modulation symbols (e.g., QAM), the index of the active transmit antenna also conveys information bits. In this paper, we establish that SM has significant signal-to-noise (SNR) advantage over conventional modulation in large-scale multiuser (multiple-input multiple-output) MIMO systems. Our new contribution in this paper addresses the key issue of large-dimension signal processing at the base station (BS) receiver (e.g., signal detection) in large-scale multiuser SM-MIMO systems, where each user is equipped with multiple transmit antennas (e.g., 2 or 4 antennas) but only one transmit RF chain, and the BS is equipped with tens to hundreds of (e.g., 128) receive antennas. Specifically, we propose two novel algorithms for detection of large-scale SM-MIMO signals at the BS; one is based on message passing and the other is based on local search. The proposed algorithms achieve very good performance and scale well. For the same spectral efficiency, multiuser SM-MIMO outperforms conventional multiuser MIMO (recently being referred to as massive MIMO) by several dBs. The SNR advantage of SM-MIMO over massive MIMO can be attributed to: (i) because of the spatial index bits, SM-MIMO can use a lower-order QAM alphabet compared to that in massive MIMO to achieve the same spectral efficiency, and (ii) for the same spectral efficiency and QAM size, massive MIMO will need more spatial streams per user which leads to increased spatial interference.
Resumo:
India's energy demand is increasing rapidly with the intensive growth of economy. The electricity demand in India exceeded the availability, both in terms of base load energy and peak availability. The efficient use of energy source and its conversion and utilizations are the viable alternatives available to the utilities or industry. There are essentially two approaches to electrical energy management. First at the supply / utility end (Supply Side Management or SSM) and the other at the consumer end (Demand Side Management or DSM). This work is based on Supply Side Management (SSM) protocol and consists of design, fabrication and testing of a control device that will be able to automatically regulate the power flow to an individual consumer's premise. This control device can monitor the overuse of electricity (above the connected load or contracted demand) by the individual consumers. The present project work specially emphasizes on contract demand of every consumer and tries to reduce the use beyond the contract demand. This control unit design includes both software and hardware work and designed for 0.5 kW contract demand. The device is tested in laboratory and reveals its potential use in the field.
Resumo:
Surface electrodes in Electrical Impedance Tomography (EIT) phantoms usually reduce the SNR of the boundary potential data due to their design and development errors. A novel gold sensors array with high geometric precision is developed for EIT phantoms to improve the resistivity image quality. Gold thin films are deposited on a flexible FR4 sheet using electro-deposition process to make a sixteen electrode array with electrodes of identical geometry. A real tissue gold electrode phantom is developed with chicken tissue paste and the fat cylinders as the inhomogeneity. Boundary data are collected using a USB based high speed data acquisition system in a LabVIEW platform for different inhomogeneity positions. Resistivity images are reconstructed using EIDORS and compared with identical stainless steel electrode systems. Image contrast parameters are calculated from the resistivity matrix and the reconstructed images are evaluated for both the phantoms. Image contrast and image resolution of resistivity images are improved with gold electrode array.
Resumo:
Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity sigma(RT) decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.