998 resultados para eBook in Pharmacology
Resumo:
In pancreatic beta cells, cyclic AMP-dependent protein kinase regulates many cellular processes including the potentiation of insulin secretion. The substrates for this kinase, however, have not been biochemically characterized. Here we demonstrate that the glucose transporter GLUT2 is rapidly phosphorylated by protein kinase A following activation of adenylyl cyclase by forskolin or the incretin hormone glucagon-like peptide-1. We show that serines 489 and 501/503 and threonine 510 in the carboxyl-terminal tail of the transporter are the in vitro and in vivo sites of phosphorylation. Stimulation of GLUT2 phosphorylation in beta cells reduces the initial rate of 3-O-methyl glucose uptake by approximately 48% but does not change the Michaelis constant. Similar differences in transport kinetics are observed when comparing the transport activity of GLUT2 mutants stably expressed in insulinoma cell lines and containing glutamates or alanines at the phosphorylation sites. These data indicate that phosphorylation of GLUT2 carboxyl-terminal tail modifies the rate of transport. This lends further support for an important role of the transporter cytoplasmic tail in the modulation of catalytic activity. Finally, because activation of protein kinase A stimulates glucose-induced insulin secretion, we discuss the possible involvement of GLUT2 phosphorylation in the amplification of the glucose signaling process.
Resumo:
BACKGROUND: Infective endocarditis (IE) mostly occurs after spontaneous low-grade bacteremia. Thus, IE cannot be prevented by circumstantial antibiotic prophylaxis. Platelet activation following bacterial-fibrinogen interaction or thrombin-mediated fibrinogen-fibrin polymerization is a critical step in vegetation formation. We tested the efficacy of antiplatelet and antithrombin to prevent experimental IE. METHODS: A rat model of experimental IE following prolonged low-grade bacteremia mimicking smoldering bacteremia in humans was used. Prophylaxis with antiplatelets (aspirin, ticlopidine [alone or in combination], eptifibatide, or abciximab) or anticoagulants (antithrombin dabigatran etexilate or anti-vitamin K acenocoumarol) was started 2 days before inoculation with Streptococcus gordonii or Staphylococcus aureus. Valve infection was assessed 24 hours later. RESULTS: Aspirin plus ticlopidine, as well as abciximab, protected 45%-88% of animals against S. gordonii and S. aureus IE (P < .05). Dabigatran etexilate protected 75% of rats against IE due to S. aureus (P < .005) but failed to protect against S. gordonii (<30% protection). Acenocoumarol was ineffective. CONCLUSIONS: Antiplatelet and direct antithrombin agents may be useful in the prophylaxis of IE in humans. In particular, the potential dual benefit of dabigatran etexilate might be reconsidered for patients with prosthetic valves, who require life-long anticoagulation and in whom S. aureus IE is associated with high mortality.
Resumo:
The vascular effects of angiotensin converting enzyme inhibitors are mediated by the inhibition of the dual action of angiotensin converting enzyme (ACE): production of angiotensin II and degradation of bradykinin. The deleterious effect of converting enzyme inhibitors (CEI) on neonatal renal function have been ascribed to the elevated activity of the renin-angiotensin system. In order to clarify the role of bradykinin in the CEI-induced renal dysfunction of the newborn, the effect of perindoprilat was investigated in anesthetized newborn rabbits with intact or inhibited bradykinin B2 receptors. Inulin and PAH clearances were used as indices of GFR and renal plasma flow, respectively. Perindoprilat (20 microg/kg i.v.) caused marked systemic and renal vasodilation, reflected by a fall in blood pressure and renal vascular resistance. GFR decreased, while urine flow rate did not change. Prior inhibition of the B2 receptors by Hoe 140 (300 microg/kg s.c.) did not prevent any of the hemodynamic changes caused by perindoprilat, indicating that bradykinin accumulation does not contribute to the CEI-induced neonatal renal effects. A control group receiving only Hoe 140 revealed that BK maintains postglomerular vasodilation via B2 receptors in basal conditions. Thus, the absence of functional B2 receptors in the newborn was not responsible for the failure of Hoe 140 to prevent the perindoprilat-induced changes. Species- and/or age-related differences in the kinin-metabolism could explain these results, suggesting that in the newborn rabbit other kininases than ACE are mainly responsible for the degradation of bradykinin.
Resumo:
A previously described extract of sheep fetal liver was reported to reverse many of the cytokine changes associated with aging in mice, including an augmented spleen cell ConA-stimulated production of IL-4 and decreased production of IL-2. Similar effects were not seen with adult liver preparations. These changes were observed in various strains of mice, including BALB/c, DBA/2 and C57BL/6, using mice with ages ranging from 8 to 110 weeks. Preliminary characterization of this crude extract showed evidence for the presence of Hb gamma chain, as well as of lipid A of LPS. We show below that purified preparations of sheep fetal Hb, but not adult Hb, in concert with suboptimally stimulating doses of LPS (lipid A), cooperate in the regulation of production of a number of cytokines, including TNFalpha and IL-6, in vitro. Furthermore, isolated fresh spleen or peritoneal cells from animals treated in vivo with the same combination of Hb and LPS, showed an augmented capacity to produce these cytokines on further culture in vitro. Evidence was also obtained for a further interaction between CLP, LPS and fetal Hb itself in this augmented cytokine production. These data suggest that some of the functional activities in the fetal liver extract reported earlier can be explained in terms of a novel immunomodulatory role of a mixture of LPS (lipid A) and fetal Hb.
Resumo:
We examined the contribution of each alpha(1)-adrenoceptor (AR) subtype in noradrenaline (NAd)-evoked contraction in the thoracic aortas and mesenteric arteries of mice. Compared with the concentration-response curves (CRCs) for NAd in the thoracic aortas of wild-type (WT) mice, the CRCs of mutant mice showed a significantly lower sensitivity. The pD(2) value in rank order is as follows: WT mice (8.21) > alpha(1B)-adrenoceptor knockout (alpha(1B)-KO) (7.77) > alpha(1D)-AR knockout (alpha(1D)-KO) (6.44) > alpha(1B)- and alpha(1D)-AR double knockout (alpha(1BD)-KO) (5.15). In the mesenteric artery, CRCs for NAd did not differ significantly between either WT (6.52) and alpha(1B)-KO mice (7.12) or alpha(1D)-KO (6.19) and alpha(1BD)-KO (6.29) mice. However, the CRC maximum responses to NAd in alpha(1D)- and alpha(1BD)-KO mice were significantly lower than those in WT and alpha(1B)-KO mice. Except in the thoracic aortas of alpha(1BD)-KO mice, the competitive antagonist prazosin inhibited the contraction response to NAd with high affinity. However, prazosin produced shallow Schild slopes in the vessels of mice lacking the alpha(1D)-AR gene. In the thoracic aorta, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.25 and 8.46, respectively, and in alpha(1B)-KO mice they were 8.49 and 9.13, respectively. In the mesenteric artery, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.34 and 7.47, respectively, and in alpha(1B)-KO mice they were 8.11 and 7.82, respectively. These pharmacological findings were in fairly good agreement with findings from comparison of CRCs, with the exception of the mesenteric arteries of WT and alpha(1B)-KO mice, which showed low affinities to BMY7378. We performed a quantitative analysis of the mRNA expression of each alpha(1)-AR subtype in these vessels in order to examine the correlation between mRNA expression level and the predominance of each alpha(1)-AR subtype in mediating vascular contraction. The rank order of each alpha(1)-AR subtype in terms of its vasoconstrictor role was in fairly good agreement with the level of expression of mRNA of each subtype, that is, alpha(1D)-AR > alpha(1B)-AR > alpha(1A)-AR in the thoracic aorta and alpha(1D)-AR > alpha(1A)-AR > alpha(1B)-AR in the mesenteric artery. No dramatic compensatory change of alpha(1)-AR subtype in mutant mice was observed in pharmacological or quantitative mRNA expression analysis.
Resumo:
Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon grown in the presence of 3 ng/ml (5 X 10(-10) M) epidermal growth factor (EGF) until day 12 showed 2- to 3-fold increased activities in the two glial enzymes, glutamine synthetase (GLU-S) and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase). This effect was concentration-dependent, with maximal stimulation in cultures treated daily with 3 ng/ml EGF. Addition of EGF during the first 10 culture days was sufficient to produce a maximal stimulation of both GLU-S and CNPase on day 19, whereas treatments starting on day 12 were ineffective. The stimulation of GLU-S preceded that of CNPase. The EGF-induced increase in GLU-S activity was not directly dependent on the presence of insulin, triiodothyronine, or hydrocortisone in the medium, whereas insulin was required for the stimulation of CNPase. A single dose of 5 ng/ml EGF on day 2 caused a slight but significant decrease in DNA synthesis after day 6. The present results indicate that in serum-free aggregating cell cultures of fetal rat telencephalon EGF partially inhibits DNA synthesis, and stimulates an early step in glial differentiation.
Resumo:
We wished to determine if chronic neuropeptide Y (NPY) infusion (1 ng/min for 1 week by Alzet minipump) could decrease plasma renin activity (PRA) and norepinephrine (NE) in a rat myocardial infarction (MI) model of moderate compensated congestive heart failure (CHF). CHF was produced by prior (6-8 weeks) ligation of the left coronary artery; control rats were sham-operated. Carotid arterial blood was drawn for PRA and NE in conscious unrestrained rats that had been instrumented 24 h earlier. MI rats had increased PRA as compared with sham-operated rats [8.73 +/- 1.27 vs. 5.10 +/- 0.91 ng angiotensin (AI) I/ml.h, mean +/- SE]. During chronic NPY infusion, PRA was reduced to normal in the MI group (4.78 +/- 0.91) but was not affected in the sham group (5.65 +/- 0.51). Plasma NE was altered similarly, but the changes did not reach statistical significance. These data suggest that NPY has the capacity to restrain renin release in moderate compensated CHF.
Resumo:
Wounding initiates a strong and largely jasmonate-dependent remodelling of the transcriptome in the leaf blades of Arabidopsis (Arabidopsis thaliana). How much control do jasmonates exert on wound-induced protein repatterning in leaves? Replicated shotgun proteomic analyses of 2.5-mm-wide leaf strips adjacent to wounds revealed 106 differentially regulated proteins. Many of these gene products have not emerged as being wound regulated in transcriptomic studies. From experiments using the jasmonic acid (JA)-deficient allene oxide synthase mutant we estimated that approximately 95% of wound-stimulated changes in protein levels were deregulated in the absence of JA. The levels of two tonoplast proteins already implicated in defense response regulation, TWO-PORE CHANNEL1 and the calcium-V-ATPase ACA4 increased on wounding, but their transcripts were not wound inducible. The data suggest new roles for jasmonate in controlling the levels of calcium-regulated pumps and transporters, proteins involved in targeted proteolysis, a putative bacterial virulence factor target, a light-dependent catalyst, and a key redox-controlled enzyme in glutathione synthesis. Extending the latter observation we found that wounding increased the proportion of oxidized glutathione in leaves, but only in plants able to synthesize JA. The oxidizing conditions generated through JA signaling near wounds help to define the cellular environment in which proteome remodelling occurs.
Resumo:
Fas ligand (FasL) causes apoptosis of epidermal keratinocytes and triggers the appearance of spongiosis in eczematous dermatitis. We demonstrate here that FasL also aggravates inflammation by triggering the expression of proinflammatory cytokines, chemokines, and adhesion molecules in keratinocytes. In HaCaT cells and in reconstructed human epidermis (RHE), FasL triggered a NF-kappaB-dependent mRNA accumulation of inflammatory cytokines (tumor necrosis factor-alpha, IL-6, and IL-1beta), chemokines (CCL2/MCP-1, CXCL1/GROalpha, CXCL3/GROgamma, and CXCL8/IL-8), and the adhesion molecule ICAM-1. Oligomerization of Fas was required both for apoptosis and for gene expression. Inhibition of caspase activity abolished FasL-dependent apoptosis; however, it failed to suppress the expression of FasL-induced genes. Additionally, in the presence of caspase inhibitors, but not in their absence, FasL triggered the accumulation of CCL5/RANTES (regulated on activation normal T cell expressed and secreted) mRNA. Our findings identify a novel proinflammatory role of FasL in keratinocytes that is independent of caspase activity and is separable from apoptosis. Thus, in addition to causing spongiosis, FasL may play a direct role in triggering and/or sustaining inflammation in eczemas.
Resumo:
In ovarian follicles, cumulus cells provide the oocyte with small molecules that permit growth and control maturation. These nutrients reach the germinal cell through gap junction channels, which are present between the cumulus cells and the oocyte, and between the cumulus cells. In this study the involvement of intercellular communication mediated by gap junction channels on oocyte maturation of in vitro cultured bovine cumulus-oocyte complexes (COCs) was investigated. The stages of oocyte maturation were determined by Hoechst 33342 staining, which showed that 90% of COCs placed in the maturation medium for 24 h progress to the metaphase II stage. Bovine COC gap junction communication was disrupted initially using n-alkanols, which inhibit any passage through gap junctions. In the presence of 1-heptanol (3 mmol l(-1)) or octanol (3.0 mmol l(-1) and 0.3 mmol l(-1)), only 29% of the COCs reached metaphase II. Removal of the uncoupling agent was associated with restoration of oocyte maturation, indicating that treatment with n-alkanols was neither cytotoxic nor irreversible. Concentrations of connexin 43 (Cx43), the major gap junction protein expressed in the COCs, were decreased specifically using a recombinant adenovirus expressing the antisense Cx43 cDNA (Ad-asCx43). The efficacy of adenoviral infection was > 95% in cumulus cells evaluated after infection with recombinant adenoviruses expressing the green fluorescence protein. RT-PCR performed on total RNA isolated from Ad-asCx43-infected COCs showed that the rat Cx43 cDNA was transcribed. Western blot analysis revealed a three-fold decrease in Cx43 expression in COCs expressing the antisense RNA for Cx43. Injection of cumulus cells with Lucifer yellow demonstrated further that the resulting lower amount of Cx43 in infected COCs is associated with a two-fold decrease in the extent of coupling between cumulus cells. In addition, oocyte maturation was decreased by 50% in the infected COC cultures. These results indicate that Cx43-mediated communication between cumulus cells plays a crucial role in maturation of bovine oocytes.
Resumo:
PURPOSE: Our purpose was to develop a well-defined medium for the in vitro maturation (IVM) of immature bovine cumulus-oocyte complexes (COC). METHODS: The COC were cultured in the presence of three protein supplementations: fetal bovine serum (FBS), bovine serum albumin, and Synthetic Serum Substitute. The embryos obtained after in vitro fertilization of IVM oocytes were cocultured with Vero cells and their development to the morula and blastocyst stages was studied. RESULTS: When FBS was absent from the IVM medium, a significantly lower fertilization rate was observed, followed by a decrease in the percentage of embryos reaching the blastocyst stage. When FBS was replaced by a defined protein supplementation, the best results were obtained with Synthetic Serum Substitute. CONCLUSIONS: Adequate protein supplementation of the IVM medium optimizes the fertilization rate and the development of bovine IVM oocytes. The implication of these results in the human field is discussed.
Resumo:
Successful expansion of haematopoietic cells in ex vivo cultures will have important applications in transplantation, gene therapy, immunotherapy and potentially also in the production of non-haematopoietic cell types. Haematopoietic stem cells (HSC), with their capacity to both self-renew and differentiate into all blood lineages, represent the ideal target for expansion protocols. However, human HSC are rare, poorly characterized phenotypically and genotypically, and difficult to test functionally. Defining optimal culture parameters for ex vivo expansion has been a major challenge. We devised a simple and reproducible stroma-free liquid culture system enabling long-term expansion of putative haematopoietic progenitors contained within frozen human fetal liver (FL) crude cell suspensions. Starting from a small number of total nucleated cells, a massive haematopoietic cell expansion, reaching > 1013-fold the input cell number after approximately 300 d of culture, was consistently achieved. Cells with a primitive phenotype were present throughout the culture and also underwent a continuous expansion. Moreover, the capacity for multilineage lymphomyeloid differentiation, as well as the recloning capacity of primitive myeloid progenitors, was maintained in culture. With its better proliferative potential as compared with adult sources, FL represents a promising alternative source of HSC and the culture system described here should be useful for clinical applications.