950 resultados para e-Wastes
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The hydrogen gas is regarded as clean and renewable energy source, since it generates only water during combustion when used as fuel. It shows 2.75 times more energy content than any hydrocarbon and it can be converted into electrical, mechanical energy or heat. Inoculum sources have been successfully tested for hydrogen biological production in temperate climate countries as sludge treatment plants sewage, sludge treatment plant wastewater, landfill sample, among others. However, hydrogen biologic production with inoculum from environmental samples such as sediment reservoirs, especially in tropical countries like Brazil, is rarely investigated. Reservoirs and fresh water lake sediment may contain conditions for the survival of a wide variety of microorganisms which use different carbon sources mainly glucose and xylose, in the fermentation. Glucose is an easily biodegradable, present in most of the industrial effluents and can be obtained abundantly from agricultural wastes. A wide variety of wastewater resulting from agriculture, industry and pulp and paper processed from wood may contain xylose in its constitution. Such effluent contains glucose and xylose concentrations of about 2 g/L. In this sense, this work verified hydrogen biological production in anaerobic batch reactor (1L), at 37 ° C, initial pH 5.5, headspace with N2 (100%), Del Nery medium, vitamins and peptone (1 g/L), fed separately with glucose (2g/L) and xylose (2 g/L). The inoculum was taken from environmental sample (sediment reservoir Itupararanga - Ibiúna - SP-Brazil). It was previously purified in serial dilutions at H2 generation (10-5, 10-7, 10-10), and heat treated (90º C - 10 min) later to inhibited the H2 consumers. The maximum H2 generations obtained in both tests were observed at 552 h, as described below. At the reactors fed with glucose and xylose were observed, respectively, 9.1 and 8.6 mmol H2/L, biomass growth (0.2 and 0.2 nm); consumption of sugar concentrations 53.6% (1.1 glucose g/L) and 90.5% (1.8 xylose g/L); acetic acid generation (124.7 mg/L and 82.7 mg/L), butyric acid (134.0 mg/L and 230.4 mg/L) and there wasn’t methane generation in the reactors. Microscopic analysis of biomass in anaerobic reactors showed the predominance of Gram positive rods and rods with endospores, whose morphology is characteristic of H2-generating bacteria, in both tests. These species were selected from the natural environment. In DGGE analysis performed difference were observed between populations from inoculum and in tests. This analysis confirmed that some species of bacteria were selected which remained under the conditions imposed on the experiment. The efficiency of the pre-treatment of inoculum and the imposition of pH 5.5 inhibited methane-producing microorganisms and the consumers of H2. Therefore, the experimental conditions imposed allowed the attainment of bacterial consortium of producer H2 taken from an environmental sample with concentration of xylose and glucose similar to the ones of the industrial effluents.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Diversidade bacteriana em solos, vinhaça e semicompostagem relacionados ao cultivo de cana-de-açúcar
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this research consisted in the use of wastes from tropical wood (Cordia goeldiana) with low density and the polyurethane resin (mono and bicomponent) castor oil based in the manufacture of particleboards, generating subsidies as application in rural and civil construction, as well in the furniture industry. The particleboards were manufactured with 15% of polyurethane resin content (one part of pre-polymer and one part of polyol), compaction pressure of 4MPa, pressing temperature of 90 degrees C and press time of 7 minutes. The physical and mechanical properties investigated were density, moisture content, strength modulus in bending and internal bond, both obtained according to the recommendations of the Brazilian standard ABNT NBR 14810:2002. The mean values obtained for these properties were systematically superior to the Brazilian standard requirement. This point showed that it is possible the use of Cordia goeldiana wastes in the particleboard production. We confirmed the hypothesis of a significant linear relation between density and the internal bond of the panels, allowing the estimation of the internal bond of particleboards.
Resumo:
The great demand for animal protein was responsible for the increase on the broilers production and hence, the generation of waste from the poultry slaughter was increased as well, which in turn, propelled the development of techniques that allow the reuse and recycling of these wastes. The objective of this study was to evaluate the efficiency of composting on the treatment and recycling of solid waste from poultry slaughterhouse. The solid waste was from a commercial poultry slaughterhouse and was composed of viscera, muscle, fat, bone, blood and feathers that was mixed with a source of carbon, rice husk. Initially, a windrow with a volume of 1.5m(3) was built, and then some parameters were monitored: temperature, total solids (TS), volatile (VS), N, P, K, organic carbon (C), composting organic matter (COC), organic matter resistant to composting (MORC), chemical oxygen demand (COD), mass and volume of the windrow, most probable number (MPN) of total and fecal coliforms, as well as their reductions during the process. The maximum temperature reached in the center of the windrow was 53.3 degrees C (weekly average) since reductions of weight of TS and VS and volume during the pre-composting were 36.1, 44.3 and 23.3%, respectively and during the composting process was 21.8, 23.8 and 4.4%. The low volume reduction can be associated with high concentrations of MORC (40.1%) which can be mainly related to the quality of the carbon source. The process produced satisfactory total reductions of TS, VS and volume that were respectively, 50.1, 57.5 and 26.7%. However reductions were observed in 43% of amount of nitrogen in the final compound. Despite reductions in nitrogen content, composting proved to be an effective method in the treatment of solid waste from poultry slaughterhouse.
Resumo:
There is a large demand for organic fertilizers in organic agriculture, but few options for different wastes have been studied. The aim of the present work was to evaluate the biological responses of earthworms Eisenia andrei Bouche in wastes composed of cattle manure, peanut husk and spent coffee grounds, as well as to analyze the effect of earthworms on the microbial density and chemical properties of the vermicompost. Four treatments were employed, H1: cattle manure (100%), H2: cattle manure (75%) + peanut husk (25%), H3: cattle manure (75%) + spent coffee grounds (25%), H4: cattle manure (50%) + spent coffee ground (25%) + peanut husk (25%), with six replicates in a completely randomized design. The addition of spent coffee grounds to the manure increased the total biomass and indicated a rising trend in the production of cocoons, while the peanut husk apparently did not affect these variables. The CFU of bacteria and fungi were affected by the treatments at the beginning and end of the experiment and by the earthworms during the waste transformation. The evaluated organic waste mixtures differently affected the growth and reproduction of earthworms and chemical and biological properties of humus.