951 resultados para dynamic response parameters
Resumo:
A simple method for estimating the frequency responses of directly modulated lasers from optical spectra is presented. The frequency-modulation index and intensity-modulation index of a distributed feedback laser can be obtained through the optical spectrum analyses. The main advantage is that the measurement setup is very simple. Only a microwave source and an optical spectrum analyser are needed and there is no need to use a calibrated broadband photodetector. Experiment shows that the proposed method is as accurate as the swept frequency method using a network analyzer and is applicable to a wide range of modulation powers.
Resumo:
The measurement and analysis of the microwave frequency response of semiconductor optical amplifiers (SOAs) are proposed in this paper. The response is measured using a vector network analyzer. Then with the direct-subtracting method, which is based on the definition of scattering parameters of optoelectronic devices, the responses of both the optical signal source and the photodetector are eliminated, and the response of only the SOA is extracted. Some characteristics of the responses can be observed: the responses are quasi-highpass; the gain increases with the bias current; and the response becomes more gradient while the bias current is increasing. The multisectional model of an SOA is then used to analyze the response theoretically. By deducing from the carrier rate equation of one section under the steady state and the small-signal state, the expression of the frequency response is obtained. Then by iterating the expression, the response of the whole SOA is simulated. The simulated results are in good agreement with the measured on the three main characteristics, which are also explained by the deduced results. This proves the validity of the theoretical analysis.
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is introduced in this paper. The intrinsic small-signal response can be directly extracted from the measured transmission coefficients of laser diode by the method. However the chip temperature may change with the injection bias current due to thermal effects, which causes inaccurate intrinsic response by our method. Therefore, how to determine the chip temperature and keep the laser chip adiabatic is very critical when extracting the intrinsic response. To tackle these problems, the dependence of the lasing wavelength of the laser diode on the chip temperature is investigated, and an applicable measurement setup which keeps the chip temperature stable is presented. The scattering parameters of laser diode are measured on diabatic and adiabatic conditions, and the extracted intrinsic responses for both conditions are compared. It is found that the adiabatic intrinsic responses are evidently superior to those without thermal consideration. The analysis indicates that inclusion of thermal effects is necessary to acquire accurate intrinsic response.
Resumo:
作物的抗旱性是一个多基因控制的、极为复杂的数量性状,植物对干旱在分子水平上的差异反应通过植物组织生理和细胞生物学水平,最终表现为植物抗旱性的不同。在我国,旱地农业超过耕地面积的50%,但水资源短缺,因此培育和选育抗旱高产作物是发展节水型农业最有效的途径。 青藏高原气候恶劣、年均降雨量少,也是世界大麦初生起源中心,因而蕴藏了十分丰富的与抗逆相关的种质资源材料,从这些特殊的资源材料克隆抗旱基因,不仅对培育抗旱、优质、高产大麦新品种具有重要理论意义和经济价值,而且对整个作物抗旱基础和育种应用研究都具重大促进作用。 为了筛选青稞(裸大麦,Hordeum vulgare ssp. vulgare)抗旱性材料,本研究选用来自青藏高原不同地区的84份青稞为材料,在叶片失水率(water loss rate, WLR)检测分析的基础上,选择失水率值差异显著的12个品种,通过相对含水量(relative water content, RWC)和反复干旱法评价其抗旱性,并通过植株对干旱胁迫下的丙二醛(MDA)含量和游离脯氨酸(free-proline)含量变化,了解不同抗旱性材料的生理反应特性。选择抗旱性强弱不同的品种各两份进行LEA2蛋白基因(Dhn6基因)、LEA3蛋白基因(HVA1基因)的克隆,比较LEA蛋白结构差异与作物抗旱性之间的关系。同时,对抗旱性不同的青稞品种受到干旱时间不同的失水变化率(dynamics water loss rate, DWLR)进行了检测;对抗旱性不同的青稞对照材料进行2 h、4 h、8 h和12 h的快速干旱处理,通过SYBR Green实时荧光定量RT-PCR技术对Dhn6基因、Dhn11基因、Dhn13基因和HVA1基因在不同抗旱性材料受到不同干旱时间处理后的相对表达水平进行了检测。本研究对LEA蛋白基因在抗旱性不同的青稞材料中的干旱胁迫分子水平上的差异反应进行了研究,也对植物的抗旱机理进行了初步探讨。主要研究结果如下: 1. 青稞苗期进行离体叶片失水率测定结果表明,来自青藏高原的84份青稞材料的WLR在0.086~0.205gh-1g-1DW之间。选择WLR低于0.1gh-1g-1DW和WLR高于0.18gh-1g-1DW的品种各6份,并对苗期分别进行未干旱及干旱12小时的处理。相对含水量检测结果表明,低失水率青稞材料干旱后的具有更高的相对含水量,盆栽缺水试验也显示叶片失水率低的材料耐旱能力强于失水率高的材料。通过水合茚三酮法测定离体叶片游离脯氨酸的含量,结果表明,所有品种未干旱处理时,游离脯氨酸含量差异不大(17.10~25.74 µgg-1FW);干旱12小时后,低失水率的品种游离脯氨酸含量明显增高(32.99~53.45µgg-1FW),高失水率品种的游离脯氨酸含量与干旱前变化不明显(P<0.05)。硫代巴比妥酸法测定离体叶片丙二醛(MDA)含量,结果显示,12份所选对照品种中,丙二醛的含量在0.97~2.74nmolg-1FW,干旱12小时后丙二醛的含量显著上升(1.46~4.74nmolg-1FW),高失水率的6个品种的丙二醛含量在未干旱和干旱处理时都明显高于低WLR品种。本研究结果表明青稞的低失水率、低丙二醛含量、高相对含水量和高脯氨酸含量具相关性(P<0.05)。综上研究,我们认为作物失水率的测定可以作为快速检测作物抗旱性的指标之一,因此,强抗旱品种喜玛拉10号(TR1)、品比14号(TR2)和弱抗旱品种冬青8号(TS1)、QB24 (TS2)被选作抗旱基因克隆和表达分析的研究材料。 2. 高等植物胚胎发育晚期丰富蛋白(late embryogenesis abundant proteins, LEA proteins)与植物耐脱水性密切相关,为了探讨青稞LEA蛋白结构差异性与植物抗旱性的关系,本研究以强抗旱品种(喜玛拉10号、品比14号)和弱抗旱品种(冬青8号、QB24)为材料,利用同源克隆法,通过RT-PCR,分别克隆了与抗旱性密切相关的Dhn6基因和HVA1基因。Dhn6基因序列分析结果表明,强抗旱品种品比14号和弱抗旱品种冬青8号Dhn6基因所克隆到的序列为1026bp,它们之间只有5个碱基的差异;喜玛拉10号和QB24克隆到的序列长963bp。在强弱不同的抗旱品种中有22个核苷酸易突变位点,相应的脱水素氨基酸序列推导结果表明,22个核苷酸突变位点中,仅有8个位点导致相应的氨基酸残基的改变,其余的位点系同义突变,另外,21个富含甘氨酸序列的缺失并没有联系作物抗旱性特征。推测这些同义突变位点的氨基酸残基对维持青稞DHN6蛋白的正常结构和功能起着非常重要的作用,也可能DHN6蛋白对青稞长期适应逆境胁迫和遗传进化的结果。对HVA1基因的序列分析结果表明,冬青8号、QB24、品比14号和喜玛拉10号的目的基因核苷酸序列全长分别为661bp、697bp、694bp和691bp,它们都包含1个完整的开放阅读框。相应的LEA3蛋白氨基酸序列结果表明,11个高度保守的氨基酸残基组成基元重复序列的拷贝数与青稞抗旱性之间没有必然关系,在强抗旱品种(喜玛拉10号、品比14号)中三个共同的氨基酸突变位点Gln32、Arg33和Ala195可能对抗旱蛋白的结构和功能有影响;另外,强抗旱青稞品种LEA3蛋白质中11-氨基酸保守基元序列拷贝数和极性氨基酸占蛋白的比例更高,推测LEA3蛋白中基元序列拷贝数和极性氨基酸占蛋白的比例对该蛋白的结构和功能影响更大。 3. LEA蛋白基因的表达水平的上调与植物的耐脱水性密切相关,我们对强抗旱性材料(喜玛拉10号、品比14号)和弱抗旱材料(冬青8号、QB24)进行干旱处理2 h、4 h、6 h、8 h和10 h的失水变化率进行测定,结果表明弱抗旱品种在2~4小时之间失水率变化最明显,而四个对照品种的失水率在8小时后和24小时的失水率值变化不大。进一步提取青稞苗期进行2 h、4 h、8 h和12 h的干旱处理后的总RNA,通过SYBR Green实时荧光定量RT-PCR技术对青稞脱水素基因(Dhn6、Dhn11和Dhn13)和LEA3蛋白基因(HVA1)的相对表达水平受干旱时间和作物抗旱性的影响进行了检测。研究发现,抗旱性不同的青稞品种随干旱处理的时间延长,Dhn6、Dhn11、Dhn13和HVA1基因的相对表达水平不同。 Dhn6基因的相对表达水平在强抗旱青稞品种干旱8小时后快速上升,但在弱抗旱青稞品种干旱处理12小时后检测到更高表达量;Dhn11基因在对照青稞抗旱品种的表达累积水平随干旱时间的延长持续下降;整个干旱过程中,Dhn13基因的相对表达水平在弱抗旱品种持续上升,在强抗旱品种中干旱处理8小时快速上升并达到最高,干旱12小时后降低。与脱水素基因相比较,强抗旱青稞品种在干旱2小时后HVA1基因的相对表达水平显著升高,相对表达量随干旱处理的时间持续上升,在干旱12小时后达到最高;与之相比较,在整个干旱过程中,弱抗旱品种的相对表达水平显著低于强抗旱品种,在干旱8小时之前弱抗旱品种的相对表达水平变化不明显;在干旱8~12小时后却显著上升。上述结果表明,不同的LEA蛋白在植物耐脱水过程中的干旱表达累积水平不同;干旱不是诱导高等植物Dhn11基因表达的主要因素;植物的抗旱性不同,不同LEA蛋白基因对干旱的反应有差异。推测某些LEA蛋白基因的干旱胁迫早期表达累积程度与植物的抗旱性直接相关;其中,Dhn11基因和Dhn12基因不同的表达模式可能与干旱调控表达顺式作用成分(dehydration responsive element, DRE)的有无或结构上的差异有关。 本研究结果认为,(1)失水率和相对含水量可作为植物抗旱性检测的指标之一;(2) DHN6同义突变位点的氨基酸残基对维持该蛋白的正常结构和功能起着重要作用;(3) 11-氨基酸保守基元序列拷贝数和极性氨基酸的比例对LEA3蛋白结构和功能有重要影响;(4)LEA蛋白表达随着干旱胁迫程度而增加,但Dhn11基因并不受干旱诱导表达;(5)作物的抗旱性不同,LEA蛋白对干旱的累积反应并不相同,干旱早期LEA蛋白的累积程度可能会影响植物的抗旱性。 Drought resistance was a complex trait which involved multiple physiological and biochemical mechanisms and regulation of numerous genes. Because its complex traits, it is difficult to understand the mechanisms of drought resistance in plants. Plants respond to water stress through multiple physiological mechanisms at the cellular, tissue, and whole-plant levels. Tibetan hulless barley, a pure line, is a selfing annual plant that has predominantly penetrated into the Qinghai-Tibetan Plateau and remains stable populations there. The wide ecological range of Tibetan hulless barley differs in water availability, temperature, soil type and vegetation, which makes it possess a high potential of adaptive diversity to abiotic stresses. This adaptive genetic diversity indicates that the potential of Tibetan hulless barley serves as a good source for drought resistance alleles for breeding purposes. 12 contrasting drought-tolerant genotypes were selected to measure relative water content (RWC), maldondialdehyde (MDA) and proline content, based on values of water loss rate (WLR) and repeated drought methods from Tibetan populations of cultivated hulless barley. As a result of the screening, sensitive and tolerant genotypes were identified to clarify relationships between characteristics of LEA2/LEA3 genes sequences and expression and drought-tolerant genotypes, associated with resistance to water deficit. In addition, dynamics water loss rate (DWLR) was measured to observe the changes on diffrential drought-tolerant genotypes. Real-time quantitative RT-PCR was applied to detect relative expression levels of Dhn6, Dhn11, Dhn13 and HVA1 genes in sensitive and tolerant genotypes with 2 h, 4 h, 8h and 12 h of dehydration. In the present study, differential sequences and expression of LEA2/LEA3 genes were explored in Tibetan hulless barley, associated with phenotypically diverse drought-tolerant genotypes. 1. The assessments of WLR and RWC were considered as an alternative measure of plant water statues reflecting the metabolic activity in plants, and the parameters of MDA and proline contents were usually consistent with the resistance to water stress. The values of detached leaf WLR of the tested genotypes were highly variable among 84 genotypes, ranging from 0.086 to 0.205 g/h.g DW. The 12 most contrasting genotypes (6 genotypes with the lowest values of WLR and 6 genotypes with the highest values of WLR) were further validated by measuring RWC, MDA and free-proline contents, which were well watered and dehydrated for 12 h. Results of RWC indicated that the values of 12 contrasting genotypes RWC ranged from 89.94% to 93.38% under condition of well water, without significant differences, but 6 genotypes with lower WLR had higher RWC suffered from 12 h dehydration. The results indicated that lower MDA contents, lower scores of WLR and higher proline contents were associated with drought-tolerant genotypes in hulless barley. Remarkably, proline amounts were increased more notable in 6 tolerant genotypes than 6 sensitive genotypes after excised leaves were dehydrated for 12 h, with control to slight changes under condition of well water. Results of MDA contents showed that six 6 tolerant genotypes had lower MDA contents than the 6 sensitive genotypes under both stressed and non-stressed conditions. As a result of that screening, drought- resistant genotypes (Ximala 10 and Pinbi 14) and drought-sensitive genotypes (Dongqing 8 and QB 24) were chosen for comparing the differential characteristics of LEA2/LEA3 genes and their expression analysis. It was conclusion that measurements of WLR could be considered an alternative index as screening of drought-tolerant genotypes in crops. 2. Late embryogenesis abundant (LEA) proteins were thought to protect against water stress in plants. To explore the relationships between configuration of LEA proteins and phenotypically diverse drought-tolerant genotypes, sequences of LEA genes and their deduced proteins were compared in Tibetan hulless barley. Results of comparing Dhn6 gene in Ximala 10 and QB24 indicated that absence of 63bp was found, except that only 5 mutant nucleotides were found. While 22 mutant sites were taken place in Dhn6 gene between sensitive and tolerant lines, 14 synonymous mutation sites appeared in the contrasting genotypes. The additional/absent polypeptide of 21 polar amino acid residues was not consistent with phenotypically drought-tolerant genotypes in hulless barley. It was deduced that synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein. The sequencing analysis results indicated that each cloned HVA1 gene from four selected genotypes contained an entire open reading frame. The whole sequence of HVA1 gene from Dongqing 8, QB24, Pinbi 14 and Ximala 10 was respectively 661bp, 697bp, 694bp and 691bp. Results of DNA sequence analyses showed that the differences in nucleotides of HVA1 gene in sensitive genotypes were not consistent with that of tolerant genotypes, except for absence of 33 nucleotides from +154 to +186 (numbering from ATG) in QB24. Database searches using deduced amino acid sequences showed a high homology in LEA3 proteins in the selected genotypes. Multiple sequence alignments revealed that LEA3 protein from Dongqing 8 was composed of 8 repeats of an 11 amino acid motif, less the fourth motif than Pinbi 14, Ximala 10 and QB24. Consistent mutant amino acid residues appeared in contrasting genotypes by aligning and comparing the coding sequence region, including Gln32, Arg33 and Ala195 in tolerant genotypes as compared to Asp32, Glu33 and Thr195 (Thr184 in Dongqing 8) in sensitive lines. It was concluded that consistent appearance of Gln32, Arg33 and Ala195 would contributed to functions of LEA3 protein in crops, as well as higher proportion of 11-amino-repeating motifs and polar amino acid residues. 3. Most of the LEA genes are up-regulated by dehydration, salinity, or low temperature, are also induced by application of exogenous ABA, which increases in concentration in plants under various stress conditions and acts as a mobile stress signal. Higher levels of proteins of LEA group 3 accumulated was correlated well with high level of desiccation tolerance in severely dehydrated plant seedlings. Dehydrins (DHNs), members of LEA2 protein, are an immunologically distinct protein family, and Dhn genes expression is associated with plant response to dehydration. Dynamic water loss rate was measured between sensitive genotypes and tolerant genotypes after they were dehydrated for 2 h, 4 h, 6h and 8 h. Detailed measurements of WLR at the early stage of dehydration (2, 4, 6, and 8 h) showed that WLR was stabilizing after 8 h, and there were no significant changes between these values and WLR after 24 h. Drought stress was applied to 10-day-old seedlings by draining the solution from the container for defined dehydration periods. Leaf tissues of the selected genotypes were harvested from control plants (time 0); and after 2, 4, 8, and 12 h of dehydration. Differential expression trends of Dhn6, Dhn11, Dhn13 and HVA1 genes were detected in phenotypically diverse drought-tolerant hulless barleys, related to different time of dehydration. Results of quantitative real-time PCR indicated that relative level of HVA1 expression was always higher in tolerant genotypes, rapidly increasing at the earlier stages (after 2-4 h of dehydration). However, HVA1 expressions of sensitive genotypes had a fast increase from 8 h to 12 h of stress. Significant differences in expression trends of dehydrin genes between tolerant genotypes and sensitive lines were detected, mainly in Dhn6 and Dhn13 gene, depending on the duration of the dehydration stress. The relative expression levels of Dhn6 gene were significantly higher in tolerant genotypes after 8 h dehydration, by control with notable higher expression levels after 12 h water stress in sensitive ones. The relative expression levels of Dhn13 gene tended to ascend during exposure to dehydration in drought-sensitive genotypes. However, fluctuate trends of Dhn13 expression level were detected in drought-resistant lines, including in lower expression levels of 12 h dehydration as compared to 8 h water stress. It was conclusion that (1) diverse LEA proteins would play variable roles in resisting water stress in plants; (2) expression of Dhn11 gene was not induced by dehydrated signals because of the trends of expression descended in contrasting genotypes suffered from water deficit and (3) variable accumulations on LEA proteins would be appear in diverse drought-tolerant genotypes during dehydrations. It is deduced that higher accumulations of Dhn6 and Dhn13 expression in 8 h dehydration are related to diverse drought-tolerant lines in crops. The present results indicated that different dehydrin genes would play variable functional roles in resisting water stress when plants were suffered from water deficit. The authors suggest physiologically different reactions between resistant and sensitive genotypes may be the results of differential expression of drought-resistant genes and related signal genes in plants. In addition, contrarily induced expression of Dhn11 and Dhn12 was related to dehydration responsive element (DRE) in barleys. The present study indicated that (1) measurements of WLR and RWC could be considered as one index of drought-tolerant screenings; (2) synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein, (3) higher proportion of 11-amino-repeating motifs and polar amino acid residues would contribute to functions on LEA3 protein, (4) the longer drought, the more accumulation on LEA proteins, except for Dhn11 gene in crops and (5) differential responses on expression of LEA protein genes would result in physiological traits of drought tolerance in plants.
Resumo:
The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.
Resumo:
Using poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether (PEGME) with different molecular weights as side chains, three comb-like polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the polymer electrolytes possess two glass transitions: alpha -transition and beta -transition, and the temperature dependence of the ionic conductivity shows WLF (Williams-Landel-Ferry) behavior. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T-beta as reference temperature. The values of the WLF parameters (C-1 and C-2) were obtained and were found to be almost independent of the length of the PEGME side chain and the content of Li salt. By reference to T-0 = 50 degreesC. the relation between log tau (c) and c was found to be linear. The master curves are displaced progressively to higher frequencies as the molecular weight of the side chain is increased. The relation between log tau (n) and the molecular weight of the side chain is also linear. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The responses of a cryohydrogel tyrosinase enzyme electrode to four substrates in three pure water immiscible organic solvents were investigated. Kinetic parameters, the maximum kinetic current, I-max, the apparent Michaelis-Menten constant, K-m(app), and I-max/K-m(app), were calculated. The I-max/K-m(app) value was taken as an indicator of the catalytic efficiency of the sensor. The effect of the substrate hydrophobicity on I-max/K-m(app) and response time of the sensor were discussed. The effects of both hydrophobicity (log P) and dielectric constant (epsilon) of the organic solvent on the catalytic efficiency of the enzyme in the organic phase were studied. (C) 1997 Elsevier Science S.A.
Resumo:
A new relationship, which correlates the glass transition temperature (T(g)) with other molecular parameters, is developed by using Flory's lattice statistics of polymer chain and taking the dynamic segment as the basic statistical unit. The dependences of T(g) on the chain stiffness factor (sigma-2), dynamic stiffness factor (beta = -d ln-sigma-2/dT) and molecular weight of polymer are discussed in detail based on the theory. The theory is compared with experimental data for many linear polymers and good agreement is obtained. It is shown that T(g) is essentially governed by the chain stiffness factor at T(g). Moreover, a simple correlation between the parameter K(g) of the Fox-Flory equation (T(g) = T(g)infinity - K(g)/M(n)) and other molecular parameters is deduced. The agreement between theoretical predictions and experimental measurements of K(g) has been found to be satisfactory for many polymers.
Resumo:
The dielectric response of graded composites having general power-law-graded cylindrical inclusions under a uniform applied electric field is investigated. The dielectric profile of the cylindrical inclusions is modeled by the equation epsilon(i)(r)=c(b+r)(k) (where r is the radius of the cylindrical inclusions and c, b and k are parameters). Analytical solutions for the local electrical potentials are derived in terms of hypergeometric functions and the effective dielectric response of the graded composites is predicted in the dilute limit. Moreover, for a simple power-law dielectric profile epsilon(i)(r) = cr(k) and a linear dielectric profile epsilon(i)(r) = c(b + r), analytical expressions of the electrical potentials and the effective dielectric response are derived exactly from our results by taking the limits b -> 0 and k -> 1, respectively. For a higher concentration of inclusions, the effective dielectric response is estimated by an effective-medium approximation. In addition, we have discussed the effective response of graded cylindrical composites with a more complex dielectric profile of inclusion, epsilon(i)(r)=c(b+r)(k)e(beta r). (c) 2005 American Institute of Physics.
Resumo:
Photoinhibition is a central problem for the understanding of plasticity in photosynthesis vs. irradiance response. It effectively reduces the photosynthetic rate. In this contribution, we present a mechanistic model of algal photoinhibition induced by photodamage to photosystem-II. Photosystem-IIs (PSIIs) are assumed to exist in three states: open, closed and inhibited. Photosynthesis is closely associated with the transitions between the three states. The present model is defined by four parameters: effective cross section of PSII, number of PSIIs, turnover time of electron transfer chains and the ratio of rate constant of damage to that of repair of D1 proteins in PSIIs. It gives a photosynthetic response curve of phytoplankton to irradiance (PI-curve). Without photoinhibition, the PI-curve is in hyperbola with the first three parameters. The PI-curve with photoinhibition can be simplified to the same form as the hyperbola by replacing either the number of PSIIs with the number of functional PSIIs or the turnover time of electron transfer chains with the average turnover time.
Resumo:
The effects of acute temperature challenge on some immune parameters of haemocyte in Zhikong scallop, Chlamys farreri, recognised as a temperature sensitive bivalve species, were evaluated over a short period of time. Scallops were suddenly transferred from 17 degrees C to 11 degrees C, 23 degrees C and 28 degrees C for a period of 72 h. Total haemocyte count (THC), percentage of phagocytic haemocytes, reactive oxygen species (ROS) production, acid phosphatase (ACP) and superoxide dismutase (SOD) activities (in both haemocyte lysate and cell-free haemolymph) were chosen as biomarkers of temperature stress. Results demonstrated that the percentage of phagocytic haemocytes and ACP activity in cell-free haemolymph of scallops challenged at 28 degrees C for 72 h significantly decreased. By contrast, reactive oxygen species production by haemocytes increased when compared to the initial values. It is concluded that haemocyte activities of C. farreri appear to be compromised when scallops were transferred from 17 degrees C to 28 degrees C. Meanwhile, no obvious negative effect of acute temperature stress was detected on haemocyte activities of C. farreri challenged at 11 degrees C, which highlighted the high tolerance of scallops to acute decrease of seawater temperatures. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study attempts to model alpine tundra vegetation dynamics in a tundra region in the Qinghai Province of China in response to global warming. We used Raster-based cellular automata and a Geographic Information System to study the spatial and temporal vegetation dynamics. The cellular automata model is implemented with IDRISI's Multi-Criteria Evaluation functionality to simulate the spatial patterns of vegetation change assuming certain scenarios of global mean temperature increase over time. The Vegetation Dynamic Simulation Model calculates a probability surface for each vegetation type, and then combines all vegetation types into a composite map, determined by the maximum likelihood that each vegetation type should distribute to each raster unit. With scenarios of global temperature increase of I to 3 degrees C, the vegetation types such as Dry Kobresia Meadow and Dry Potentilla Shrub that are adapted to warm and dry conditions tend to become more dominant in the study area.
Resumo:
Synthesis efforts that identify patterns of ecosystem response to a suite of warming manipulations can make important contributions to climate change science. However, cross-study comparisons are impeded by the paucity of detailed analyses of how passive warming and other manipulations affect microclimate. Here we document the independent and combined effects of a common passive warming manipulation, open-top chambers (OTCs), and a simulated widespread land use, clipping, on microclimate on the Tibetan Plateau. OTCs consistently elevated growing season averaged mean daily air temperature by 1.0-2.0 degrees C, maximum daily air temperature by 2.1-7.3 degrees C and the diurnal air temperature range by 1.9-6.5 degrees C, with mixed effects on minimum daily air temperature, and mean daily soil temperature and moisture. These OTC effects on microclimate differ from reported effects of a common active warming method, infrared heating, which has more consistent effects on soil than on air temperature. There were significant interannual and intragrowing season differences in OTC effects on microclimate. For example, while OTCs had mixed effects on growing season averaged soil temperatures, OTCs consistently elevated soil temperature by approximately 1.0 degrees C early in the growing season. Nonadditive interactions between OTCs and clipping were also present: OTCs in clipped plots generally elevated air and soil temperatures more than OTCs in nonclipped plots. Moreover, site factors dynamically interacted with microclimate and with the efficacy of the OTC manipulations.These findings highlight the need to understand differential microclimate effects between warming methods, within warming method across ecosystem sites, within warming method crossed with other treatments, and within sites over various timescales. Methods, sites and scales are potential explanatory variables and covariables in climate warming experiments. Consideration of this variability among and between experimental warming studies will lead to greater understanding and better prediction of ecosystem response to anthropogenic climate warming.
Resumo:
本文利用“最小响应法”给出了 N≥2阶无静差采样控制系统的设计公式.作者指出:对于某类闭环控制系统,在给定阶跃响应最大超调量σ_(max)的条件下,可以找出最佳比值T/T_(T 为系统的采样周期,T_(?)为对象的不便克服的等效小时间常数之和),使系统获得相应阶最大误差系数 K_(N+1),从而可使系统达到快速精密的控制指标。为了在工程设计中应用方便,文中还给出了二至六阶无静差的σ_(max),T/T_(?),K_(N+1)T(?)最佳参数组,使得这类闭环控制系统的设计最佳化和简易化.
Resumo:
A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.