964 resultados para drug dose increase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary vasoconstriction represents a physiological adaptive mechanism to high altitude. If exaggerated, however, it is associated with important morbidity and mortality. Recent mechanistic studies using short-term acute high altitude exposure have provided insight into the importance of defective vascular endothelial and respiratory epithelial nitric oxide (NO) synthesis, increased endothelin-1 bioavailability, and overactivation of the sympathetic nervous system in causing exaggerated hypoxic pulmonary hypertension in humans. Based on these studies, drugs that increase NO bioavailability, attenuate endothelin-1 induced pulmonary vasoconstriction, or prevent exaggerated sympathetic activation have been shown to be useful for the treatment/prevention of exaggerated pulmonary hypertension during acute short-term high altitude exposure. The mechanisms underpinning chronic pulmonary hypertension in high altitude dwellers are less well understood, but recent evidence suggests that they differ in some aspects from those involved in short-term adaptation to high altitude. These differences have consequences for the choice of the treatment for chronic pulmonary hypertension at high altitude. Finally, recent data indicate that fetal programming of pulmonary vascular dysfunction in offspring of preeclampsia and children generated by assisted reproductive technologies represents a novel and frequent cause of pulmonary hypertension at high altitude. In animal models of fetal programming of hypoxic pulmonary hypertension, epigenetic mechanisms play a role, and targeting of these mechanisms with drugs lowers pulmonary artery pressure. If epigenetic mechanisms also are operational in the fetal programming of pulmonary vascular dysfunction in humans, such drugs may become novel tools for the treatment of hypoxic pulmonary hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New directly acting antivirals (DAAs) that inhibit hepatitis C virus (HCV) replication are increasingly used for the treatment of chronic hepatitis C. A marked pharmacokinetic variability and a high potential for drug-drug interactions between DAAs and numerous drug classes have been identified. In addition, ribavirin (RBV), commonly associated with hemolytic anemia, often requires dose adjustment, advocating for therapeutic drug monitoring (TDM) in patients under combined antiviral therapy. However, an assay for the simultaneous analysis of RBV and DAAs constitutes an analytical challenge because of the large differences in polarity among these drugs, ranging from hydrophilic (RBV) to highly lipophilic (telaprevir [TVR]). Moreover, TVR is characterized by erratic behavior on standard octadecyl-based reversed-phase column chromatography and must be separated from VRT-127394, its inactive C-21 epimer metabolite. We have developed a convenient assay employing simple plasma protein precipitation, followed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of levels of RBV, boceprevir, and TVR, as well as its metabolite VRT-127394, in plasma. This new, simple, rapid, and robust HPLC-MS/MS assay offers an efficient method of real-time TDM aimed at maximizing efficacy while minimizing the toxicity of antiviral therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last few years γ-hydroxybutyric acid (GHB) and γ-butyrolactone (GBL) have attracted much interest as recreational drugs and knock-out drops in drug-facilitated sexual assaults. This experiment aims at getting an insight into the pharmacokinetics of GHB after intake of GBL. Therefore Two volunteers took a single dose of 1.5 ml GBL, which had been spiked to a soft drink. Assuming that GBL was completely metabolized to GHB, the corresponding amount of GHB was 2.1 g. Blood and urine samples were collected 5 h and 24 h after ingestion, respectively. Additionally, hair samples (head hair and beard hair) were taken within four to five weeks after intake of GBL. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after protein precipitation with acetonitrile. The following observations were made: spiked to a soft drink, GBL, which tastes very bitter, formed a liquid layer at the bottom of the glass, only disappearing when stirring. Both volunteers reported weak central effects after approximately 15 min, which disappeared completely half an hour later. Maximum concentrations of GHB in serum were measured after 20 min (95 µg/ml and 106 µg/ml). Already after 4-5 h the GHB concentrations in serum decreased below 1 µg/ml. In urine maximum GHB concentrations (140 µg/ml and 120 µg/ml) were measured after 1-2 h, and decreased to less than 1 µg/ml within 8-10 h. The Ratio of GHB in serum versus blood was 1.2 and 1.6

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The γ-aminobutyric acid (GABA) system has been proposed as a target for novel antidepressant and anxiolytic treatments. Emerging evidence suggests that gabapentin (GBP), an anticonvulsant drug that significantly increases brain GABA levels, is effective in the treatment of anxiety disorders. The current study was designed to measure prefrontal and occipital GABA levels in medication-free healthy subjects after taking 0 mg, 150 mg and 300 mg GBP. Subjects were scanned on a 3T scanner using a transmit-receive head coil that provided a relatively homogenous radiofrequency field to obtain spectroscopy measurement in the medial prefrontal (MPFC) and occipital cortex (OCC). There was no dose-dependent effect of GBP on GABA levels in the OCC or MPFC. There was also no effect on Glx, choline or N-acetyl-aspartate concentrations. The previously reported finding of increased GABA levels after GBP treatment is not evident for healthy subjects at the dose of 150 and 300 mg. As a result, if subjects are scanned on a 3T scanner, low dose GPB is not useful as an experimental challenge agent on the GABA system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pulmonary route has been traditionally used to treat diseases of the respiratory tract. However, important research within the last two decades have shown that in addition to treating local diseases, a wide range of systemic diseases can be treated by delivering drugs to the lungs. The recent FDA approval to market Exubera, an inhalable form of insulin developed by Pfizer, to treat Diabetes, may just be the stepping stone that the pharmaceutical industry needs to market other drugs to treat systemic diseases via the lungs. However, this technology still needs repeated drug doses to control glucose levels, as the inhaled drug is cleared rapidly. Technologies have been developed where inhaled particles are capable of controlled release of drug from the lungs. An important feature of these technologies is the large geometric size of the particles that makes it difficult for the lung macrophages to clear these particles, which results in longer residence times for the particles in the lungs. Owing to the porosity, these particles have lower densities making them deliverable to the deep lungs. However, no modulation of drug release can be achieved with these technologies when more drug release may be required. This additional requirement can only be assuaged by additional dosing of the drug formulation, which can have undesirable effects due to excess loading of excipients in the lungs. In an attempt to bring about modulation of release from long residence time particles, a novel concept was developed in our laboratory that has been termed as the Agglomerated Vesicle Technology (AVT). Liposomes with encapsulated drug were agglomerated using well known cross linking chemistries to form agglomerates in the micron sized range. The large particles exhibited aerodynamic sizes in the respirable size range with minimal damage to the particles upon nebulization. By breaking the cross links between the liposomes with a cleaving agent, it was anticipated that triggered release of drug from the AVT particles could be achieved. In vivo studies done in healthy rabbits showed that post-administration modulation of drug release is possible from the AVT particles after the introduction of the cleaving agent. This study has important implications for the future development of this technology, where the AVT particles can be made “sensitive” to the product of disease. It is envisaged that a single dose of AVT containing the appropriate drug when administered to the lungs would maintain drug levels at a controlled rate over an extended period of time. When the need for more drug arises, the product of the disease would trigger the AVT particles to release more drug as needed to control the condition, thus eliminating the need for repeated drug doses and improved compliance amongst patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report we test the hypothesis that long-term virus-induced alterations in CYP occur from changes initiated by the virus that may not be related to the immune response. Enzyme activity, protein expression and mRNA of CYP3A2, a correlate of human CYP3A4, and CYP2C11, responsive to inflammatory mediators, were assessed 0.25, 1, 4, and 14 days after administration of several different recombinant adenoviruses at a dose of 5.7 x 1012 virus particles (vp)/kg to male Sprague Dawley rats. Wild type adenovirus, containing all viral genes, suppressed CYP3A2 and 2C11 activity by 37% and 39%, respectively within six hours. Levels fell to 67% (CYP3A2) and 79% (CYP2C11) of control by 14 days (p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies in cocaine-dependent human subjects have shown differences in white matter on diffusion tensor imaging (DTI) compared with non-drug-using controls. It is not known whether the differences in fractional anisotropy (FA) seen on DTI in white matter regions of cocaine-dependent humans result from a pre-existing predilection for drug use or purely from cocaine abuse. To study the effect of cocaine on brain white matter, DTI was performed on 24 rats after continuous infusion of cocaine or saline for 4 weeks, followed by brain histology. Voxel-based morphometry analysis showed an 18% FA decrease in the splenium of the corpus callosum (CC) in cocaine-treated animals relative to saline controls. On histology, significant increase in neurofilament expression (125%) and decrease in myelin basic protein (40%) were observed in the same region in cocaine-treated animals. This study supports the hypothesis that chronic cocaine use alters white matter integrity in human CC. Unlike humans, where the FA in the genu differed between cocaine users and non-users, the splenium was affected in rats. These differences between rodent and human findings could be due to several factors that include differences in the brain structure and function between species and/or the dose, timing, and duration of cocaine administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylphenidate (MPD), commonly known as Ritalin, is the most frequently prescribed drug to treat children and adults with attention deficit hyperactivity disorder (ADHD). Adolescence is a period of development involving numerous neuroplasticities throughout the central nervous system (CNS). Exposure to a psychostimulant such as MPD during this crucial period of neurodevelopment may cause transient or permanent changes in the CNS. Genetic variability may also influence these differences. Thus, the objective of the present study was to determine whether acute and chronic administration of MPD (0.6, 2.5, or 10.0mg/kg, i.p.) elicit effects among adolescent WKY, SHR, and SD rats and to compare whether there were strain differences. An automated, computerized, open-field activity monitoring system was used to study the dose-response characteristics of acute and repeated MPD administration throughout the 11-day experimental protocol. Results showed that all three adolescent rat groups exhibited dose-response characteristics following acute and chronic MPD administration, as well as strain differences. These strain differences depended on the MPD dose and locomotor index. Chronic treatment of MPD in these animals did not elicit behavioral sensitization, a phenomenon described in adult rats that is characterized by the progressive augmentation of the locomotor response to repeated administration of the drug. These results suggest that the animal's age at time of drug treatment and strain/genetic variability play a crucial role in the acute and chronic effect of MPD and in the development of behavioral sensitization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many clients who undergo methadone maintenance (MM) treatment for heroin and other opiate dependence prefer abstinence from methadone. Attempts at methadone detoxification are often unsuccessful, however, due to distressing physical as well as psychological symptoms. Outcomes from a MM client who voluntarily participated in an Acceptance and Commitment Therapy (ACT) - based methadone detoxification program are presented. The program consisted of a 1-month stabilization and 5-month gradual methadone dose reduction period, combined with weekly individual ACT sessions. Urine samples were collected twice weekly to assess for use of illicit drugs. The participant successfully completed the program and had favorable drug use outcomes during the course of treatment, and at the one-month and one-year follow-ups. Innovative behavior therapies, such as ACT, that focus on acceptance of the inevitable distress associated with opiate withdrawal may improve methadone detoxification outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human colon tumor cell line, LS174T, has been shown to have four major components of the drug metabolizing system; cytochrome b$\sb5$ reductase, cytochrome b$\sb5$, cytochrome P450 reductase and cytochrome P450, by activity measurements, spectral studies and antibody cross-reactivity. Cytochrome P450IA1 is induced by benzanthracene in these cells as shown by activity with the specific substrate, ethoxyresorufin, cross-reactivity with rabbit antibodies to rat IA1, and by a hybridizing band on a Northern blot to a rat IA1 probe.^ Further, this system has proven responsive to various inducers and conditions of growth. The enzyme activities were found stable over limited cell passages with control values of 0.03 and 0.13 $\mu$mol/min/mg protein for NADPH and NADH cytochrome c (cyt c) reducing activity, 0.05 nmol cyt b$\sb5$ per milligram and 0.013 nmol cytochrome P450 per milligram of microsomal protein. Phenobarbital/hydrocortisone treatment showed a consistent, but not always significant increase in the NADPH and NADH cyt c reducing activity and benzanthracene treatment an increase in the NADH cyt c reducing activity. Delta-aminolevulinic acid (0.5mM) caused a significant decrease in the specific activity of all enzyme contents and activities tested.^ Finally, the cytochrome b$\sb5$ to cytochrome P450, by the coordinate induction of the cytochrome b$\sb5$ pathway by P450 inducers, by the high ratio of NADH to NADPH ethoxycoumarin deethylase activity in uninduced cell microsomes, and by the increase in NADH and NADPH ethoxycoumarin deethylase activity when the microsomes were treated with potassium cyanide, a desaturase inhibitor. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myelosuppression is a common side effect of anticancer agents such as cisplatin. This makes patients more susceptible to infections. Gentamicin is an aminoglycoside antibiotic that is very effective in the treatment of gram negative infections. Both these drugs are excreted by the kidney, and are also nephrotoxic. Thus, each may affect the disposition of the other. This project deals with the nature and duration of the effects of cisplatin on gentamicin pharmacokinetics in F-344 rats.^ The appropriate cisplatin dose was determined by comparing the nephrotoxicity of four intravenous doses--3, 4, 5, and 6 mg/kg. The 6 mg/kg dose gave the most consistent nephrotoxic effect, with peak plasma urea nitrogen and creatinine levels on the 7th day. Plasma and tissue gentamicin levels were compared between rats given gentamicin alone (30 mg/kg, intraperitoneally, twice a day for four days), and those given cisplatin (6 mg/kg, intraperitoneally) with the first gentamicin dose. Cisplatin caused a significant elevation of gentamicin levels in plasma, liver, and spleen. However, cisplatin given in three weekly doses of 2 mg/kg each, had no effect on plasma or tissue gentamicin levels.^ In order to determine the duration of cisplatin effects, a single dose of gentamicin (30 mg/kg, intravenously) was given to different groups of rats either alone, or on day 1, 4, 7, 15, or 29 following cisplatin (6 mg/kg, intravenously on day 1). Plasma samples were collected through a cannula placed on the external jugular vein at 0.5, 1, 2, 3, 4, 5, and 6 hours after gentamicin; the rats were sacrificed at 24 hours. Cisplatin caused a significant decrease in gentamicin excretion and an elevation of gentamicin levels in plasma, kidneys, liver, and spleen at all the time points that were tested, except with concomitant administration. Plasma urea nitrogen was elevated, and creatinine clearance decreased by the 4th day after cisplatin and these continued to be significantly different even on the 29th day after cisplatin.^ These results demonstrate that cisplatin nephrotoxicity reduced gentamicin excretion for at least a month in F-344 rats. This could increase the risk of toxicity from the second drug by elevating its levels in plasma and tissue. Thus, caution should be exercised when renally excreted drugs are given after cisplatin. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The addition of bevacizumab to chemotherapy improves progression-free survival in metastatic breast cancer and pathological complete response rates in the neoadjuvant setting. Micrometastases are dependent on angiogenesis, suggesting that patients might benefit from anti-angiogenic strategies in the adjuvant setting. We therefore assessed the addition of bevacizumab to chemotherapy in the adjuvant setting for women with triple-negative breast cancer. METHODS For this open-label, randomised phase 3 trial we recruited patients with centrally confirmed triple-negative operable primary invasive breast cancer from 360 sites in 37 countries. We randomly allocated patients aged 18 years or older (1:1 with block randomisation; stratified by nodal status, chemotherapy [with an anthracycline, taxane, or both], hormone receptor status [negative vs low], and type of surgery) to receive a minimum of four cycles of chemotherapy either alone or with bevacizumab (equivalent of 5 mg/kg every week for 1 year). The primary endpoint was invasive disease-free survival (IDFS). Efficacy analyses were based on the intention-to-treat population, safety analyses were done on all patients who received at least one dose of study drug, and plasma biomarker analyses were done on all treated patients consenting to biomarker analyses and providing a measurable baseline plasma sample. This trial is registered with ClinicalTrials.gov, number NCT00528567. FINDINGS Between Dec 3, 2007, and March 8, 2010, we randomly assigned 1290 patients to receive chemotherapy alone and 1301 to receive bevacizumab plus chemotherapy. Most patients received anthracycline-containing therapy; 1638 (63%) of the 2591 patients had node-negative disease. At the time of analysis of IDFS, median follow-up was 31·5 months (IQR 25·6-36·8) in the chemotherapy-alone group and 32·0 months (27·5-36·9) in the bevacizumab group. At the time of the primary analysis, IDFS events had been reported in 205 patients (16%) in the chemotherapy-alone group and in 188 patients (14%) in the bevacizumab group (hazard ratio [HR] in stratified log-rank analysis 0·87, 95% CI 0·72-1·07; p=0·18). 3-year IDFS was 82·7% (95% CI 80·5-85·0) with chemotherapy alone and 83·7% (81·4-86·0) with bevacizumab and chemotherapy. After 200 deaths, no difference in overall survival was noted between the groups (HR 0·84, 95% CI 0·64-1·12; p=0·23). Exploratory biomarker assessment suggests that patients with high pre-treatment plasma VEGFR-2 might benefit from the addition of bevacizumab (Cox interaction test p=0·029). Use of bevacizumab versus chemotherapy alone was associated with increased incidences of grade 3 or worse hypertension (154 patients [12%] vs eight patients [1%]), severe cardiac events occurring at any point during the 18-month safety reporting period (19 [1%] vs two [<0·5%]), and treatment discontinuation (bevacizumab, chemotherapy, or both; 256 [20%] vs 30 [2%]); we recorded no increase in fatal adverse events with bevacizumab (four [<0·5%] vs three [<0·5%]). INTERPRETATION Bevacizumab cannot be recommended as adjuvant treatment in unselected patients with triple-negative breast cancer. Further follow-up is needed to assess the potential effect of bevacizumab on overall survival.