941 resultados para discrete Fourier transform
Resumo:
Urea bridged organic-inorganic hybrid mesoporous SiO2 materials (U-BSQMs) were synthesized through a sol-gel procedure by co-condensation of bis(triethoxysilyl propyl) urea (BSPU) under basic conditions using cetyltrimethylammonium bromide (CTAB) as organic template. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the mesoporous structure of the sample. Fourier-transform infrared spectroscopy (FT-IR), solid state CP-MAS NMR spectroscopy of Si-29 (Si-29, CP-MAS NMR) and C-13 (C-13 CP NMR) indicated that most of the Si-C bonds are unbroken during the synthesis process.
Resumo:
Hexagonal vaterite-type LuBO3:Tb3+ microflower-like phosphors have been successfully prepared by an efficient surfactant- and template-free hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometry transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence(PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples.
Resumo:
The core-shell structured YNbO4:Eu3+/Tb3+@SiO2 particles were realized by coating the YNbO4:Etr(3+)/Tb3+ phosphors onto the surface of spherical silica via a sol-gel process. The obtained materials were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform IR spectroscopy (FT-IR), photoluminescence (PL) spectra, and cathodoluminescence (CL) spectra.
Resumo:
In this paper, nanocrystalline YVO4:Eu3+ powders have been successfully synthesized via high-temperature solution-phase synthesis process. The nanocrystalline YVO4:Eu3+ particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UVNis absorption spectra and luminescence spectra, luminescence decay curve and Fourier transform infrared (FT-IR), X-ray photoelectron spectra (XPS) respectively. The as-prepared nanocrystalline YVO4:Eu3+ particles are well crystallized with ellipsoidal morphology.
Resumo:
Nanostructured CaWO4, CaWO4:Eu3+, and CaWO4:Tb3+ phosphor particles were synthesized via a facile sonochemical route. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, low voltage cathodoluminescence spectra, and photoluminescence lifetimes were used to characterize the as-obtained samples. The X-ray diffraction results indicate that the samples are well crystallized with the scheelite structure of CaWO4.
Resumo:
By using ethylenediamine as both an alkali and ligand, quantum size SnO2, nanocrystallites were synthesized with a solvothermal route. The transmission electron micrographs (TEM) were employed to characterize the morphologies of the products. The crystal sizes of the as-synthesized SnO2 were ranged form 2.5 to 3.6 nm. The crystal structure and optical properties of the products were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, optical absorption spectra, photoluminescence and Raman spectra.
Resumo:
This study sought to determine the main components (saccharides and phenolic acids) in crude extract of the Chinese herb Tanshen by electrospray ionization Fourier transform ion cyclotron resonant mass spectrometry (ESI-FT-ICR-MS) in negative-ion mode. Eleven compounds were identified as phenolic acids by exact mass measurement and further confirmed by sustained off-resonance irradiation (SORI) CID data. In addition, monosaccharicles and oligosaccharides (n = 2 similar to 5) and a serial of corresponding anionic adducts of saccharide were observed without adding any anions additionally to the extract solution, and the anionic components were unambiguously identified as H2O, HCl, HCOOH, HNO3, C3H6O2, H2SO4 and C5H7NO3 according to the exact mass measurement results.
Resumo:
Langmuir-Blodgett (LB) films of octadecylammonium octadecanoate (C(18)H(37)j7NH(3)(+)C(17)H(35)COO(-),ODASA) and octadecylammonium octadecanoate-d(35) (C18H37+NH3+C17D35COO-, ODASA-d(53)) were prepared and their thermal behaviors were investigated by variable-temperature Fourier transform infrared transmission spectroscopy. It was found that the two hydrocarbon chains of ODASA molecule in LB films are highly ordered while that protonated (H) chain in ODASA-d(35) is partially disordered with some gauche conformers introduced at room temperature.
Resumo:
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.
Resumo:
Arabinogalactan derivatives conjugated with gad olinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A(2)) or hexylamine (Gd-DTPA-CMAG-A(6)) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), C-13 nuclear magnetic resonance (C-13 NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES).
Resumo:
In this study, melt blends of poly(butylene terephthalate) (PBT) with epoxy resin were characterized by dynamic mechanical analysis, differential scanning calorimetry, tensile testing, Fourier transform infrared spectroscopy, and wide-angle X-ray diffraction. The results indicate that the presence of epoxy resin influenced either the mechanical properties of the PBT/epoxy blends or the crystallization of PBT. The epoxy resin was completely miscible with the PBT matrix. This was beneficial to the improvement of the impact performance of the PBT/epoxy blends.
Resumo:
In this paper, we report a facile method for the fabrication of type-I collagen-silver nanoparticles (Ag NPs) multilayered films by utilizing type-I collagen as a medium. These samples were characterized by UV-vis spectra photometer, atomic force microscopy, scanning electron microscopy, and Fourier transform IR spectrum. Experimental results show that collagen molecules serve as effective templates to assemble Ag NPs into multilayer films. These samples exhibit high surface-enhanced Raman scattering (SERS) enhancement abilities.
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively.
Resumo:
Fe3O4-polylactide (PLA) core-shell nanoparticles were perpared by surface functionalization of Fe3O4 nanoparticles and subsequent surface-initiated ring-opening polymerization of L-lactide. PLA was directly connected onto the magnetic nanoparticles surface through a chemical linkage. Fourier transform infrared (FT-IR) spectra directly provided evidence of the PLA on the surface of the magnetic nanoparticles. Transmission electron microscopy images (TEM) showed that the magnetic nanoparticles were coated by PLA with a 3-nm-thick shell.
Resumo:
Magnetite dodecahedral nanocrystals were fabricated using ethlenediamine tetraacetic acid (EDTA)-mediated hydrothermal route. Scanning electron microscopy images displayed that the products were almost dodecahedrons. The length of two different ribs were about 300 and 200 nm, respectively. X-ray diffraction patterns showed that the products were the cubic inverse spinel structure. Fourier transform infrared spectrum directly provided evidence of the EDTA bound to a specific surface of the precipitated magnetic nanocrystal.