979 resultados para deoxyhypusine synthase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leptospirosis in humans usually involves hypokalaemia and hypomagnesaemia and the putative mechanism underlying such ionic imbalances may be related to nitric oxide (NO) production. We previously demonstrated the correlation between serum levels of NO and the severity of renal disease in patients with severe leptospirosis. Methylene blue inhibits soluble guanylyl cyclase (downstream of the action of any NO synthase isoforms) and was recently reported to have beneficial effects on clinical and experimental sepsis. We investigated the occurrence of serum ionic changes in experimental leptospirosis at various time points (4, 8, 16 and 28 days) in a hamster model. We also determined the effect of methylene blue treatment when administered as an adjuvant therapy, combined with late initiation of standard antibiotic (ampicillin) treatment. Hypokalaemia was not reproduced in this model: all of the groups developed increased levels of serum potassium (K). Furthermore, hypermagnesaemia, rather than magnesium (Mg) depletion, was observed in this hamster model of acute infection. These findings may be associated with an accelerated progression to acute renal failure. Adjuvant treatment with methylene blue had no effect on survival or serum Mg and K levels during acute-phase leptospirosis in hamsters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Polyhydroxyalkanoates (PHAs) represent a family of polyesters naturally synthesized by a wide variety of bacteria. Through their thermoplastic and elastomeric qualities, together with their biodegradable and renewable properties, they are predicted to be a good alternative to the petroleum- derived plastics. Nevertheless, as PHA production costs using bacteria fermentation are still too high, PHA synthesis within eukaryotic systems, such as plants, has been elaborated. Although the costs were then efficiently lowered, the yield of PHAs produced remained low. In this study, Saccharomyces cerevisae has been used as another eukaryotic model in order to reveal the steps which limit PHA production. These cells express the PHA synthase of Pseudomonas aeruginosa and the PHAs obtained were analyzed to understand the flux of fatty acids towards and through the peroxisomal β-oxidation core cycle, generating the main substrate of the PHA synthase. When S. cerevisiae wild-type cells are grown in a media containing glucose as carbon source as well as fatty acids, the PHA monomer composition is largely influenced by the nature of the external fatty acid used. Thus, even-chain PHA monomers are generated from oleic acid (18:1Δ9cis) and odd- chain PHA monomers are generated from heptadecenoic acid (17:1Δ. 10 cis). Moreover, PHA synthesis is dependent on the first two enzymes of the 0-oxidation core cycle, the acyl-CoA oxidase and the multifunctional enzyme enoyl-CoA hydratase II / R-3-hydroxyacyl-CoA dehydrogenase. S. cerevisiae mutant cells growing on oleic or heptadecenoic acid and deficient in either the R-3- hydroxyacyl-CoA dehydrogenase or in the 3-ketothiolase activity, the last β-oxidation cycle steps, surprisingly contained PHAs of predominantly even-chain monomers. This is also noticed in wild- type and mutants grown on glucose or raffinose, indicating that the substrate used for PHA synthesis is generated from the degradation of intracellular short- and medium-chain fatty acids by the 3- oxidation cycle. Inhibition of fatty acid biosynthesis by cerulenin blocks the synthesis of PHAs from intracellular fatty acids but still enables the use of extracellular fatty acids for polymer production. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed towards the peroxisomal β-oxidation pathway. In this thesis, no increase of the yield of PHA produced could be obtained. But the PHA synthesis confirmed the carbon flux into and through the β-oxidation core cycle and unveiled the existence of novel mechanisms. It is thus a good tool to study in vivo the flux of carbons in S. cerevisiae cells. Résumé Les polyhydroxyalkanoates (PHAs) sont une famille de polyesters naturellement synthétisés par un grand nombre de bactéries. Ayant des propriétés de thermoplastiques, d'élastomères et étant des ressources biodégradables et renouvelables, les PHAs représentent une bonne alternative aux plastiques dérivés du pétrole. Pour pallier aux coûts considérables de la production de PHAs par fermentation bactérienne, la synthèse de PHAs par des systèmes eucaryotes telles les plantes a été élaborée. Les coûts ont ainsi efficacement été diminués, mais le rendement de PHAs produits reste faible. Dans cette étude, Saccharomyces cerevisiae a été utilisé comme autre modèle eucaryote pour révéler les étapes limitantes de la production de PHAs. Les PHAs obtenus dans les cellules exprimant la F'HA synthase de Pseudomonas aeruginosa ont été analysés afin de comprendre le flux d'acides gras vers et à travers le cycle péroxisomal de la β-oxidation, principal producteur du substrat de la PHA synthase. Lorsque la souche S. cerevisiae de type sauvage se développe dans un milieu contenant du glucose et des acides gras, la composition des monomères de PHAs est influencée par la nature des acides gras extracellulaires. Ainsi, les monomères pairs sont générés par l'acide oléique (18:1Δ9cis), tandis que les impairs le sont par l'acide heptadécénoïque (17:1Δ10cis). La synthèse de PHAs est dépendante des deux premières enzymes de la β-oxidation; l'acyl-CoA oxidase et l'enzyme multifonctionnelle enoyl-CoA hydratase II / R-3-hydroxyacyl-CoA déshydrogénase. Les souches mutantes ne possédant pas les activités de la R-3-hydroxyacyl-CoA déshydrogénase ou de la 3- ketothiolase contiennent, en présence d'acide oléique ou heptadécénoïque, des PHAs composés essentiellement de monomères pairs. Cela a également été observé en présence de glucose ou de raffinose uniquement. Le substrat utilisé pour la synthèse de PHAs a ainsi été généré par la dégradation d'acides gras intracellulaires à chaîne courte et moyenne via le cycle de la β-oxidation. L'inhibition de la synthèse d'acides gras par la cérulénine a bloqué la synthèse de PHAs par les acides gras internes. Ces résultats ont révélés l'existence d'un cycle futile par lequel des intermédiaires à chaîne courte et moyenne de la synthèse cytoplasmique d'acides gras sont dirigés vers le cycle péroxisomal de la β-oxidation. Dans cette étude, le rendement de PHAs produits reste inchangé, mais l'analyse des PHAs permet de confirmer le flux de carbones vers et à travers le cycle péroxisomal de la β-oxidation et l'existence de nouveaux méchanismes a été dévoilée. Cette synthèse s'avère être un bon outil pour étudier in vivo le flux de carbones dans les cellules de S. cerevisiae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis (TB) is an infectocontagious respiratory disease caused by members of the Mycobacterium tuberculosis complex. A 7 base pair (bp) deletion in the locus polyketide synthase (pks)15/1 is described as polymorphic among members of the M. tuberculosis complex, enabling the identification of Euro-American, Indo-Oceanic and Asian lineages. The aim of this study was to characterise this locus in TB isolates from Mexico. One hundred twenty clinical isolates were recovered from the states of Veracruz and Estado de Mexico. We determined the nucleotide sequence of a ± 400 bp fragment of the locus pks15/1, while genotypic characterisation was performed by spoligotyping. One hundred and fifty isolates contained the 7 bp deletion, while five had the wild type locus. Lineages X (22%), LAM (18%) and T (17%) were the most frequent; only three (2%) of the isolates were identified as Beijing and two (1%) EAI-Manila. The wild type pks15/1 locus was observed in all Asian lineage isolates tested. Our results confirm the utility of locus pks15/1 as a molecular marker for identifying Asian lineages of the M. tuberculosis complex. This marker could be of great value in the epidemiological surveillance of TB, especially in countries like Mexico, where the prevalence of such lineages is unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is an autoimmune disease characterised by the destruction of articular cartilage and bone damage. The chronic treatment of RA patients causes a higher susceptibility to infectious diseases such as tuberculosis (TB); one-third of the world’s population is latently infected (LTBI) with Mycobacterium tuberculosis(Mtb). The tuberculin skin test is used to identify individuals LTBI, but many studies have shown that this test is not suitable for RA patients. The goal of this work was to test the specific cellular immune responses to the Mtb malate synthase (GlcB) and heat shock protein X (HspX) antigens of RA patients and to correlate those responses with LTBI status. The T-helper (Th)1, Th17 and Treg-specific immune responses to the GlcB and HspX Mtb antigens were analysed in RA patients candidates for tumour necrosis factor-α blocker treatment. Our results demonstrated that LTBI RA patients had Th1-specific immune responses to GlcB and HspX. Patients were followed up over two years and 14.3% developed active TB. After the development of active TB, RA patients had increased numbers of Th17 and Treg cells, similar to TB patients. These results demonstrate that a GlcB and HspX antigen assay can be used as a diagnostic test to identify LTBI RA patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate whether anti-vascular endothelial growth factor (VEGF) neutralizing antibodies injected in the vitreous of rat eyes influence retinal microglia and macrophage activation. To dissociate the effect of anti-VEGF on microglia and macrophages subsequent to its antiangiogenic effect, we chose a model of acute intraocular inflammation. METHODS: Lewis rats were challenged with systemic lipopolysaccharide (LPS) injection and concomitantly received 5 µl of rat anti-VEGF-neutralizing antibody (1.5 mg/ml) in the vitreous. Rat immunoglobulin G (IgG) isotype was used as the control. The effect of anti-VEGF was evaluated at 24 and 48 h clinically (uveitis scores), biologically (cytokine multiplex analysis in ocular media), and histologically (inflammatory cell counts on eye sections). Microglia and macrophages were immunodetected with ionized calcium-binding adaptor molecule 1 (IBA1) staining and counted based on their differential shapes (round amoeboid or ramified dendritiform) on sections and flatmounted retinas using confocal imaging and automatic quantification. Activation of microglia was also evaluated with inducible nitric oxide synthase (iNOS) and IBA1 coimmunostaining. Coimmunolocalization of VEGF receptor 1 and 2 (VEGF-R1 and R2) with IBA1 was performed on eye sections with or without anti-VEGF treatment. RESULTS: Neutralizing rat anti-VEGF antibodies significantly decreased ocular VEGF levels but did not decrease the endotoxin-induced uveitis (EIU) clinical score or the number of infiltrating cells and cytokines in ocular media (interleukin [IL]-1β, IL-6, tumor necrosis factor [TNF]-α, and monocyte chemoattractant protein [MCP]-1). Eyes treated with anti-VEGF showed a significantly decreased number of activated microglia and macrophages in the retina and the choroid and decreased iNOS-positive microglia. IBA1-positive cells expressed VEGF-R1 and R2 in the inflamed retina. CONCLUSIONS: Microglia and macrophages expressed VEGF receptors, and intravitreous anti-VEGF influenced the microglia and macrophage activation state. Taking into account that anti-VEGF drugs are repeatedly injected in the vitreous of patients with retinal diseases, part of their effects could result from unsuspected modulation of the microglia activation state. This should be further studied in other ocular pathogenic conditions and human pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants possess a family of potent fatty acid-derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri-unsaturated fatty acids alpha-linolenic acid (18:3) and, in plants such as Arabidopsis thaliana and tomato, 7(Z)-, 10(Z)-, and 13(Z)-hexadecatrienoic acid (16:3). The lipoxygenase-catalyzed addition of molecular oxygen to alpha-linolenic acid initiates jasmonate synthesis by providing a 13-hydroperoxide substrate for formation of an unstable allene oxide by allene oxide synthase (AOS). This allene oxide then undergoes enzyme-guided cyclization to produce 12-oxophytodienoic acid (OPDA). These first steps take place in plastids, but further OPDA metabolism occurs in peroxisomes. OPDA has several fates, including esterification into plastid lipids and transformation into the 12-carbon prohormone jasmonic acid (JA). JA is itself a substrate for further diverse modifications, including the production of jasmonoyl-isoleucine (JA-Ile), which is a major biologically active jasmonate among a growing number of jasmonate derivatives. Each new jasmonate family member that is discovered provides another key to understanding the fine control of gene expression in immune responses; in the initiation and maintenance of long-distance signal transfer in response to wounding; in the regulation of fertility; and in the turnover, inactivation, and sequestration of jasmonates, among other processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Recent studies have reported alterations in protein kinase B (PKB)/Akt and in its downstream target, glycogen synthase kinase 3β, in depression and suicide. The aim of the present study was to investigate possible impairment of the upstream regulators, namely phosphatidylinositol 3-kinase (PI3K) and PTEN. METHODS: The ventral prefrontal cortex (Brodmann's area 11) of 24 suicide victims and 24 drug-free nonsuicide subjects was used. The antemortem diagnoses of major depression disorder were obtained from the institutional records or psychological autopsy, and toxicological analyses were performed. Protein levels of PI3K and PTEN were assayed using the immunoblot method, and the kinase activity of PI3K and Akt was determined by phosphorylation of specific substrates. RESULTS: A decrease was observed in the enzymatic activity of PI3K [ANOVA: F(3, 44) = 9.20; p < 0.001] and Akt1 [ANOVA: F(3, 44) = 13.59; p < 0.001], without any change in protein levels, in both depressed suicide victims and depressed nonsuicide subjects (p < 0.01 and p < 0.002, respectively). PTEN protein levels were increased in the same groups [ANOVA: F(3, 44) = 10.5; p < 0.001]. No change was observed in nondepressed suicide victims. CONCLUSION: This study concludes that attenuation of kinase activity of PKB/Akt in depressed suicide victims may be due to the combined dysregulation of PTEN and PI3K resulting in insufficient phosphorylation of lipid second messengers. The effect is associated with major depression rather than with suicide per se. Given the cellular deficits reported in major depression, the study of enzymes involved in cell survival and neuroplasticity is particularly relevant to neurotrophic factor dysregulation in depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept that optic nerve fiber loss might be reduced by neuroprotection arose in the mid 1990s. The subsequent research effort, focused mainly on rodent models, has not yet transformed into a successful clinical trial, but provides mechanistic understanding of retinal ganglion cell death and points to potential therapeutic strategies. This review highlights advances made over the last year. In excitotoxicity and axotomy models retinal ganglion cell death has been shown to result from a complex interaction between retinal neurons and Müller glia, which release toxic molecules including tumor necrosis factor alpha. This counteracts neuroprotection by neurotrophins such as nerve growth factor, which bind to p75NTR receptors on Müller glia stimulating the toxic release. Another negative effect against neurotrophin-mediated protection involves the action of LINGO-1 at trkB brain-derived neurotrophic factor (BDNF) receptors, and BDNF neuroprotection is enhanced by an antagonist to LINGO-1. As an alternative to pharmacotherapy, retinal defences can be stimulated by exposure to infrared radiation. The mechanisms involved in glaucoma and other optic nerve disorders are being clarified in rodent models, focusing on retrograde degeneration following axonal damage, excitotoxicity and inflammatory/autoimmune mechanisms. Neuroprotective strategies are being refined in the light of the mechanistic understanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise is known to reduce cardiovascular risk. However, its role on atherosclerotic plaque stabilization is unknown. Apolipoprotein E(-/-) mice with vulnerable (2-kidney, 1-clip: angiotensin [Ang] II-dependent hypertension model) or stable atherosclerotic plaques (1-kidney, 1-clip: Ang II-independent hypertension model and normotensive shams) were used for experiments. Mice swam regularly for 5 weeks and were compared with sedentary controls. Exercised 2-kidney, 1-clip mice developed significantly more stable plaques (thinner fibrous cap, decreased media degeneration, layering, macrophage content, and increased smooth muscle cells) than sedentary controls. Exercise did not affect blood pressure. Conversely, swimming significantly reduced aortic Ang II type 1 receptor mRNA levels, whereas Ang II type 2 receptor expression remained unaffected. Sympathetic tone also significantly diminished in exercised 2-kidney, 1-clip mice compared with sedentary ones; renin and aldosterone levels tended to increase. Ang II type 1 downregulation was not accompanied by improved endothelial function, and no difference in balance among T-helper 1, T-helper 2, and T regulatory cells was observed between sedentary and exercised mice. These results show for the first time, in a mouse model of Ang II-mediated vulnerable plaques, that swimming prevents atherosclerosis progression and plaque vulnerability. This benefit is likely mediated by downregulating aortic Ang II type 1 receptor expression independent from any hemodynamic change. Ang II type 1 downregulation may protect the vessel wall from the Ang II proatherogenic effects. Moreover, data presented herein further emphasize the pivotal and blood pressure-independent role of Ang II in atherogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression of DNA topoisomerase II alpha and beta genes was studied in murine normal tissues. Northern blot analysis using probes specific for the two genes showed that the patterns of expression were different among 22 tissues of adult mice. Expression levels of topoisomerase II alpha gene were high in proliferating tissues, such as bone marrow and spleen, and undetectable or low in 17 other tissues. In contrast, high or intermediate expression of topoisomerase II beta gene was found in a variety of tissues (15) of adult mice, including those with no proliferating cells. Topoisomerase II gene expression was also studied during murine development. In whole embryos both genes were expressed at higher levels in early than late stages of embryogenesis. Heart, brain and liver of embryos two days before delivery, and these same tissues plus lung and thymus of newborn (1-day-old) mice expressed appreciable levels of the two genes. Interestingly, a post-natal induction of the beta gene expression was observed in the brain but not in the liver; conversely, the expression of the alpha gene was increased 1 day after birth in the liver but not in the brain. However, gene expression of a proliferation-associated enzyme, thymidylate synthase, was similar in these tissues between embryos and newborns. Thus, the two genes were differentially regulated in the post-natal period, and a tissue-specific role may be suggested for the two isoenzymes in the development of differentiated tissues such as the brain and liver. Based on the differential patterns of expression of the two isoforms, this analysis indicates that topoisomerase II alpha may be a specific marker of cell proliferation, whereas topoisomerase II beta may be implicated in functions of DNA metabolism other than replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichinellosis is a serious disease with no satisfactory treatment. We aimed to assess the effect of myrrh (Commiphora molmol) and, for the first time, thyme (Thymus vulgaris L.) against enteral and encysted (parenteral) phases of Trichinella spiralis in mice compared with albendazole, and detect their effect on inducible nitric oxide synthase (iNOS) expression. Oral administration of 500 mg/kg of myrrh and thyme led to adult reduction (90.9%, 79.4%), while 1,000 mg/kg led to larvae reduction (79.6%, 71.3%), respectively. Administration of 50 mg/kg of albendazole resulted in adult and larvae reduction (94.2%, 90.9%). Positive immunostaining of inflammatory cells infiltrating intestinal mucosa and submucosa of all treated groups was detected. Myrrh-treated mice showed the highest iNOS expression followed by albendazole, then thyme. On the other hand, both myrrh and thyme-treated groups showed stronger iNOS expression of inflammatory cells infiltrating and surrounding encapsulated T. spiralis larvae than albendazole treated group. In conclusion, myrrh and thyme extracts are highly effective against both phases of T. spiralis and showed strong iNOS expressions, especially myrrh which could be a promising alternative drug. This experiment provides a basis for further exploration of this plant by isolation and retesting the active principles of both extracts against different stages of T. spiralis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p&lt;0.05), IL-1beta-induced apoptosis (p&lt;0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular response to an inflammatory stressor requires a proinflammatory cellular activation followed by a controlled resolution of the response to restore homeostasis. We hypothesized that biliverdin reductase (BVR) by binding biliverdin (BV) quells the cellular response to endotoxin-induced inflammation through phosphorylation of endothelial nitric oxide synthase (eNOS). The generated NO, in turn, nitrosylates BVR, leading to nuclear translocation where BVR binds to the Toll-like receptor-4 (TLR4) promoter at the Ap-1 sites to block transcription. We show in macrophages that BV-induced eNOS phosphorylation (Ser-1177) and NO production are mediated in part by Ca(2+)/calmodulin-dependent kinase kinase. Furthermore, we show that BVR is S-nitrosylated on one of three cysteines and that this posttranslational modification is required for BVR-mediated signaling. BV-induced nuclear translocation of BVR and inhibition of TLR4 expression is lost in macrophages derived from Enos(-/-) mice. In vivo in mice, BV provides protection from acute liver damage and is dependent on the availability of NO. Collectively, we elucidate a mechanism for BVR in regulating the inflammatory response to endotoxin that requires eNOS-derived NO and TLR4 signaling in macrophages.