928 resultados para dentin bonding
Resumo:
Adhesive bonding of aluminium is widely used in the aerospace industry. High initial bood strengths can be obtained, but bond failure occurs atter prolonged exposure to humid enviroments. The thesis contains details ot a test procedure which has been designed and developed for the assessment of different alloys, pretreatments, and adhesives, which will give adhesively bonded aluminium joints of high strength coupled with long term durability. The test involves assembly of lap shear specimens in a precision jig using 250 ballotini spacers in the adhesive to control the bond line thickness. The test is modified by drilling three accurately located holes through the bonded area after assembly of the joint and curing of the adhesive. Further important features at the test, such as fillet control, are detailed. The test was assessed, modified and developed to give a reliable and reproducible method which would discriminate amongst different bonding systems after exposure to humid test environments. This is the first test to have achieved the discrimination necessary for short term assessment of bond systems where long term durability is required. Even better discrimination has been obtained by applying stress in a stress humidity test. Having established accurate, reliable and discriminating test methods they were used to study the durability of structural epoxy adhesive bonds to aluminium as a function of alloy, pretreatment, adhesive and environment. It was established that the long term durability or adhesively bonded aluminium was directly related to the infulence of water migrating within the adhesive. Pretreatments differed in their ability to prevent hydration of the aluminium oxide by the water absorbed within the adhesive.
Resumo:
The chemistry used in key bond-forming steps to prepare nucleobases with designed patterns of hydrogen bonding is surveyed. Incorporation of the nucleobases into DNA and RNA oligomers is achieved either chemically using building blocks such as nucleoside phosphoramidites or enzymatically using nucleotide triphosphates. By varying the hydrogen bonding pattern within nucleobases, and by incorporating additional substituents, new structures have been designed that "reach over" so that contacts with both strands in targeted duplex DNA can be made in antigene strategies to control gene expression. Various new base-pairing systems have been evaluated that expand the genetic alphabet beyond Watson-Crick base pairs A.T and G.C. For example, benzo-homologated analogs of the natural DNA bases represent a new genetic set of orthogonal, size-expanded derivatives that have been shown to encode amino acids of a protein in a living organism.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In 1962, D. June Sutor published the first crystallographic analysis of C–H…O hydrogen bonding based on a selection of structures then known. Her follow-up paper the next year cited more structures and provided more details, but her ideas met with formidable opposition. This review begins by describing knowledge of C-H…O hydrogen bonding available at the time from physico-chemical and spectroscopic studies. By comparison of structures cited by Sutor with modern redeterminations, the soundness of her basic data set is assessed. The plausibility of the counter-arguments against her is evaluated. Finally, her biographical details are presented along with consideration of factors that might have impeded the acceptance of her work. © 2012 Taylor & Francis.
Resumo:
Hydrogen bonds play important roles in maintaining the structure of proteins and in the formation of most biomolecular protein-ligand complexes. All amino acids can act as hydrogen bond donors and acceptors. Among amino acids, Histidine is unique, as it can exist in neutral or positively charged forms within the physiological pH range of 5.0 to 7.0. Histidine can thus interact with other aromatic residues as well as forming hydrogen bonds with polar and charged residues. The ability of His to exchange a proton lies at the heart of many important functional biomolecular interactions, including immunological ones. By using molecular docking and molecular dynamics simulation, we examine the influence of His protonation/deprotonation on peptide binding affinity to MHC class II proteins from locus HLA-DP. Peptide-MHC interaction underlies the adaptive cellular immune response, upon which the next generation of commercially-important vaccines will depend. Consistent with experiment, we find that peptides containing protonated His residues bind better to HLA-DP proteins than those with unprotonated His. Enhanced binding at pH 5.0 is due, in part, to additional hydrogen bonds formed between peptide His+ and DP proteins. In acidic endosomes, protein His79β is predominantly protonated. As a result, the peptide binding cleft narrows in the vicinity of His79β, which stabilizes the peptide - HLA-DP protein complex. © 2014 Bentham Science Publishers.
Resumo:
This paper presents a diagnostic and prognostic condition monitoring method for insulated-gate bipolar transistor (IGBT) power modules for use primarily in electric vehicle applications. The wire-bond-related failure, one of the most commonly observed packaging failures, is investigated by analytical and experimental methods using the on-state voltage drop as a failure indicator. A sophisticated test bench is developed to generate and apply the required current/power pulses to the device under test. The proposed method is capable of detecting small changes in the failure indicators of the IGBTs and freewheeling diodes and its effectiveness is validated experimentally. The novelty of the work lies in the accurate online testing capacity for diagnostics and prognostics of the power module with a focus on the wire bonding faults, by injecting external currents into the power unit during the idle time. Test results show that the IGBT may sustain a loss of half the bond wires before the impending fault becomes catastrophic. The measurement circuitry can be embedded in the IGBT drive circuits and the measurements can be performed in situ when the electric vehicle stops in stop-and-go, red light traffic conditions, or during routine servicing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tooth loss is a common result of a variety of oral diseases due to physiological causes, trauma, genetic disorders, and aging and can lead to physical and mental suffering that markedly lowers the individual’s quality of life. Tooth is a complex organ that is composed of mineralized tissues and soft connective tissues. Dentin is the most voluminous tissue of the tooth and its formation (dentinogenesis) is a highly regulated process displaying several similarities with osteogenesis. In this study, gelatin, thermally denatured collagen, was used as a promising low-cost material to develop scaffolds for hard tissue engineering. We synthetized dentin-like scaffolds using gelatin biomineralized with magnesium-doped hydroxyapatite and blended it with alginate. With a controlled freeze-drying process and alginate cross-linking, it is possible to obtain scaffolds with microscopic aligned channels suitable for tissue engineering. 3D cell culture with mesenchymal stem cells showed the promising properties of the new scaffolds for tooth regeneration. In detail, the chemical–physical features of the scaffolds, mimicking those of natural tissue, facilitate the cell adhesion, and the porosity is suitable for long-term cell colonization and fine cell–material interactions.
Resumo:
In the present investigation, bulk and chemical partitioning of elements in the Shefa-Rud riverbed sediments are studied. Higher concentrations of elemental concentrations have been observed in estuarine zone when compared with riverine sediments (except for Al, Fe, Pb and Mn). Manganese is mobilized under anoxic conditions prevailing in the Caspian Sea. Lithogenous materials are greatly diluted in the estuarine zone by various pollutants present in the Caspian Sea. Organic metallic bonds are not significantly present in the area of study. Geological units of the area of study have resulted in the lower concentrations of elemental concentrations of riverbed sediments when compared with published values for mean crust and world sediments ones. Though, cluster analysis has clearly shown the importance of alumina-silicates in controlling the distribution of Fe and Mn in riverbed sediments but it could not depict controlling mechanism for other studied elements. Geochemical Index (Igeo) and Enrichment Factor (EF) values are indicative of a clean environment throughout the river course. These values are in a well agreement with results of chemical partitioning data. Quantification of EF values is not logically possible and therefore Igeo values can be used more effectively.