947 resultados para density-dependent model
Resumo:
An arbitrary Lagrangian-Eulerian (ALE) finite element scheme for computations of soluble surfactant droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent Navier-Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model through the surface tension and surfactant-dependent dynamic contact angle. In particular, the dynamic contact angle (theta(d)) of the droplet is defined as a function of the surfactant concentration at the contact line and the equilibrium contact angle (theta(0)(e)) of the clean surface using the nonlinear equation of state for surface tension. Further, the surface forces are included into the model as surface divergence of the surface stress tensor that allows to incorporate the Marangoni effects without calculating the surface gradient of the surfactant concentration on the free surface. In addition to a mesh convergence study and validation of the numerical results with experiments, the effects of adsorption and desorption surfactant coefficients on the flow dynamics in wetting, partially wetting and non-wetting droplets are studied in detail. It is observed that the effects of surfactants are more in wetting droplets than in the non-wetting droplets. Further, the presence of surfactants at the contact line reduces the equilibrium contact angle further when theta(0)(e) is less than 90 degrees, and increases it further when theta(0)(e) is greater than 90 degrees. Nevertheless, the presence of surfactants has no effect on the contact angle when theta(0)(e) = 90 degrees. The numerical study clearly demonstrates that the surfactant-dependent contact angle has to be considered, in addition to the Marangoni effect, in order to study the flow dynamics and the equilibrium states of surfactant droplet impingement accurately. The proposed numerical scheme guarantees the conservation of fluid mass and of the surfactant mass accurately. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Extensive and indiscriminate use of synthetic compounds and natural compounds obtained from plant sources have resulted in serious threats to the aquatic ecosystem and human health. Aqueous extract of the root of the plant, Milletia pachycarpa Benth, is currently used for killing fish in the state of Manipur, India. Moreover, this plant is also used as traditional medicine in this region. Although it is widely used in traditional medicine, there is limited information available regarding the adverse effects and mechanism underlying its toxicity. This study examined the effects of exposure to aqueous extract of M. pachycarpa (AEMP) on early embryonic development of zebrafish embryos and mechanisms underlying toxicity. Zebrafish embryos treated with different concentrations of the AEMP produced embryonic lethality and developmental defects. The 96-hr-LC50 of AEMP was found to be 4.276 mu g/mL. Further, multiple developmental abnormalities such as pericardial edema, yolk sac edema, spinal curvature, swim bladder deflation, decreased heart rate, and delayed hatching were also observed in a dose-dependent manner. Zebrafish embryo showing moderate-to-severe developmental defects following AEMP exposure cannot swim properly. Further, this study examined oxidative stress and apoptosis in embryos exposed to AEMP. Enhanced production of ROS and apoptosis was found in brain, trunk, and tail of zebrafish embryos treated with AEMP. Data suggest that oxidative stress and apoptosis are associated with AEMP-induced embryonic lethality and developmental toxicity in zebrafish embryos.
Resumo:
In this article, we look at the political business cycle problem through the lens of uncertainty. The feedback control used by us is the famous NKPC with stochasticity and wage rigidities. We extend the New Keynesian Phillips Curve model to the continuous time stochastic set up with an Ornstein-Uhlenbeck process. We minimize relevant expected quadratic cost by solving the corresponding Hamilton-Jacobi-Bellman equation. The basic intuition of the classical model is qualitatively carried forward in our set up but uncertainty also plays an important role in determining the optimal trajectory of the voter support function. The internal variability of the system acts as a base shifter for the support function in the risk neutral case. The role of uncertainty is even more prominent in the risk averse case where all the shape parameters are directly dependent on variability. Thus, in this case variability controls both the rates of change as well as the base shift parameters. To gain more insight we have also studied the model when the coefficients are time invariant and studied numerical solutions. The close relationship between the unemployment rate and the support function for the incumbent party is highlighted. The role of uncertainty in creating sampling fluctuation in this set up, possibly towards apparently anomalous results, is also explored.
Resumo:
The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.
Resumo:
Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant d- and localized f-electrons) and intersite (superexchange) correlation J (between localized f-electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of d- and f-electrons are observed to depend strongly on the value off, J and also on the total number of d-electrons (N-d). (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The use of copolymer and polymer blends widened the possibility of creating materials with multilayered architectures. Hierarchical polymer systems with a wide array of micro and nanostructures are generated by thermally induced phase separation (TIPS) in partially miscible polymer blends. Various parameters like the interaction between the polymers, concentration, solvent/non-solvent ratio, and quenching temperature have to be optimized to obtain these micro/nanophase structures. Alternatively, the addition of nanoparticles is another strategy to design materials with desired hetero-phase structures. The dynamics of the polymer nanocomposite depends on the statistical ordering of polymers around the nanoparticle, which is dependent on the shape of the nanoparticle. The entropic loss due to deformation of polymer chains, like the repulsive interactions due to coiling and the attractive interactions in the case of swelling has been highlighted in this perspective article. The dissipative particle dynamics has been discussed and is correlated with the molecular dynamics simulation in the case of polymer blends. The Cahn Hillard Cook model on variedly shaped immobile fillers has shown difference in the propagation of the composition wave. The nanoparticle shape has a contributing effect on the polymer particle interaction, which can change the miscibility window in the case of these phase separating polymer blends. Quantitative information on the effect of spherical particles on the demixing temperature is well established and further modified to explain the percolation of rod shaped particles in the polymer blends. These models correlate well with the experimental observations in context to the dynamics induced by the nanoparticle in the demixing behavior of the polymer blend. The miscibility of the LCST polymer blend depends on the enthalpic factors like the specific interaction between the components, and the solubility product and the entropic losses occurring due to the formation of any favorable interactions. Hence, it is essential to assess the entropic and enthalpic interactions induced by the nanoparticles independently. The addition of nanoparticles creates heterogeneity in the polymer phase it is localized. This can be observed as an alteration in the relaxation behavior of the polymer. This changes the demixing behavior and the interaction parameter between the polymers. The compositional changes induced due to the incorporation of nanoparticles are also attributed as a reason for the altered demixing temperature. The particle shape anisotropy causes a direction dependent depletion, which changes the phase behavior of the blend. The polymer-grafted nanoparticles with varying grafting density show tremendous variation in the miscibility of the blend. The stretching of the polymer chains grafted on the nanoparticles causes an entropy penalty in the polymer blend. A comparative study on the different shaped particles is not available up to date for understanding these aspects. Hence, we have juxtaposed the various computational studies on nanoparticle dynamics, the shape effect of NPs on homopolymers and also the cases of various polymer blends without nanoparticles to sketch a complete picture on the effect of various particles on the miscibility of LCST blends.
Resumo:
Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We report the transition from robust ferromagnetism to a spin- glass state in nanoparticulate La0.7Sr0.3MnO3 through solid solution with BaTiO3. The field- and temperature-dependent magnetization and the frequency-dependent ac magnetic susceptibility measurements strongly indicate the existence of a spin- glass state in the system, which is further confirmed from memory effect measurements. The breaking of long-range ordering into short-range magnetic domains is further investigated using density-functional calculations. We show that Ti ions remain magnetically inactive due to insufficient electron leakage from La0.7Sr0.3MnO3 to the otherwise unoccupied Ti-d states. This results in the absence of a Mn-Ti-Mn spin exchange interaction and hence the breaking of the long-range ordering. Total-energy calculations suggest that the segregation of nonmagnetic Ti ions leads to the formation of short-range ferromagnetic Mn domains.
Resumo:
A numerical model has been developed for simulating the rapid solidification processing (RSP) of Ni-Al alloy in order to predict the resultant phase composition semi-quantitatively during RSP. The present model couples the initial nucleation temperature evaluating method based on the time dependent nucleation theory, and solidified volume fraction calculation model based on the kinetics model of dendrite growth in undercooled melt. This model has been applied to predict the cooling curve and the volume fraction of solidified phases of Ni-Al alloy in planar flow casting. The numerical results agree with the experimental results semi-quantitatively.
Resumo:
We recently proposed a strain gradient theory to account for the size dependence of plastic deformation at micron and submicron length scales. The strain gradient theory includes the effects of both rotation gradient and stretch gradient such that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the stretch gradient measures explicitly enter the constitutive relations through the instantaneous tangent modulus. Indentation tests at scales on the order of one micron have shown that measured hardness increases significantly with decreasing indent size. In the present paper, the strain gradient theory is used to model materials undergoing small-scale indentations. A strong effect of including strain gradients in the constitutive description is found with hardness increasing by a factor of two or more over the relevant range behavior. Comparisons with the experimental data for polycrystalline copper and single crystal copper indeed show an approximately linear dependence of the square of the hardness, H 2, on the inverse of the indentation depth, 1/h, I.e., H-2 proportional to 1/h, which provides an important self-consistent check of the strain gradient theory proposed by the authors earlier.
Resumo:
We present the Gaussian process density sampler (GPDS), an exchangeable generative model for use in nonparametric Bayesian density estimation. Samples drawn from the GPDS are consistent with exact, independent samples from a distribution defined by a density that is a transformation of a function drawn from a Gaussian process prior. Our formulation allows us to infer an unknown density from data using Markov chain Monte Carlo, which gives samples from the posterior distribution over density functions and from the predictive distribution on data space. We describe two such MCMC methods. Both methods also allow inference of the hyperparameters of the Gaussian process.
Resumo:
This paper proposes to use an extended Gaussian Scale Mixtures (GSM) model instead of the conventional ℓ1 norm to approximate the sparseness constraint in the wavelet domain. We combine this new constraint with subband-dependent minimization to formulate an iterative algorithm on two shift-invariant wavelet transforms, the Shannon wavelet transform and dual-tree complex wavelet transform (DTCWT). This extented GSM model introduces spatially varying information into the deconvolution process and thus enables the algorithm to achieve better results with fewer iterations in our experiments. ©2009 IEEE.
Resumo:
Size-dependent elastic constants are investigated theoretically with reference to a nanoscale single-crystal thin film. A three-dimensional _3D_ model is presented with the relaxation on the surface of the nanofilm taken into consideration. The constitutive relation of the 3D model is derived by using the energy approach, and analytical expressions for the four nonzero elastic constants of the nanofilm are obtained. The size effects of the four elastic constants are then discussed, and the dependence of these elastic constants on the surface relaxation and the ambiguity in the definition of the thickness of the nanofilm are also analyzed. In addition, the elastic moduli of the nanofilm in two kinds of plane problem are obtained and discussed in the case of a special boundary condition.
Resumo:
The properties of amorphous carbon (a-C) deposited using a filtered cathodic vacuum arc as a function of the ion energy and substrate temperature are reported. The sp3 fraction was found to strongly depend on the ion energy, giving a highly sp3 bonded a-C denoted as tetrahedral amorphous carbon (ta-C) at ion energies around 100 eV. The optical band gap was found to follow similar trends to other diamondlike carbon films, varying almost linearly with sp2 fraction. The dependence of the electronic properties are discussed in terms of models of the electronic structure of a-C. The structure of ta-C was also strongly dependent on the deposition temperature, changing sharply to sp2 above a transition temperature, T1, of ≈200°C. Furthermore, T1 was found to decrease with increasing ion energy. Most film properties, such as compressive stress and plasmon energy, were correlated to the sp3 fraction. However, the optical and electrical properties were found to undergo a more gradual transition with the deposition temperature which we attribute to the medium range order of sp2 sites. We attribute the variation in film properties with the deposition temperature to diffusion of interstitials to the surface above T1 due to thermal activation, leading to the relaxation of density in context of a growth model. © 1997 American Institute of Physics.