911 resultados para degrees of phenomenal coherence
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
psi-Condensation of DNA fragments of about 4 kbp was induced by poly(ethylene glycol) (PEG), with degrees of polymerization ranging from 45 to 182, and univalent salt (NaCl). Using circular dichroism spectroscopy, we were able to accurately determine the critical amount of PEG needed to induce condensation, as a function of the NaCl concentration. A significant dependence on the PEG degree of polymerization was found. Phase boundaries determined for the multimolecular condensation were very similar to those observed previously for the monomolecular collapse, with two asymptotic regimes at low and high salt concentrations. We analyze our data using a theoretical model that properly takes into account both the polyelectrolyte nature of the DNA and the liquid crystallinity of the condensed phase. The model assumes that all PEG is excluded from the condensates and shows reentrant decondensation only at low salt. We also systematically study reentrant decondensation and find a very strong dependence on PEG molecular weight. At low PEG molecular weight, decondensation occurs at relatively low concentrations of PEG, and over a wide range of salt concentrations. This suggests that in the reentrant decondensation the flexible polymers used are not completely excluded from the condensed phase.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The description of the short-range part of the nucleon forces in terms of quark degrees of freedom is tested by supplementing, to the short range quark cluster model, a long range mesonic force well founded theoretically.
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
A mapping technique is used to derive in the context of constituent quark models effective Hamiltonians that involve explicit hadron degrees of freedom. The technique is based on the ideas of mapping between physical and ideal Fock spaces and shares similarities with the quasiparticle method of Weinberg. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpretation are obtained. Applications and comparisons with other composite-particle formalisms of the recent literature are made using the nonrelativistic quark model. (C) 1998 Academic Press.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the (D) over barN interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a confining Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperfine interaction consistent with a finite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an effective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range meson-baryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by effective Lagrangians are incorporated. The derived effective (D) over barN potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.
Resumo:
The time evolution of the matter produced in high energy heavy-ion collisions seems to be well described by relativistic viscous hydrodynamics. In addition to the hydrodynamic degrees of freedom related to energy-momentum conservation, degrees of freedom associated with order parameters of broken continuous symmetries must be considered because they are all coupled to each other. of particular interest is the coupling of degrees of freedom associated with the chiral symmetry of QCD. Quantum and thermal fluctuations of the chiral fields act as noise sources in the classical equations of motion, turning them into stochastic differential equations in the form of Ginzburg-Landau-Langevin (GLL) equations. Analytic solutions of GLL equations are attainable only in very special circumstances and extensive numerical simulations are necessary, usually by discretizing the equations on a spatial lattice. However, a not much appreciated issue in the numerical simulations of GLL equations is that ultraviolet divergences in the form of lattice-spacing dependence plague the solutions. The divergences are related to the well-known Rayleigh-Jeans catastrophe in classical field theory. In the present communication we present a systematic lattice renormalization method to control the catastrophe. We discuss the implementation of the method for a GLL equation derived in the context of a model for the QCD chiral phase transition and consider the nonequilibrium evolution of the chiral condensate during the hydrodynamic flow of the quark-gluon plasma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dynamics of a pair of satellites similar to Enceladus-Dione is investigated with a two-degrees-of-freedom model written in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space is replete of secondary resonances.
Resumo:
In this paper we studied a non-ideal system with two degrees of freedom consisting of a dumped nonlinear oscillator coupled to a rotatory part. We investigated the stability of the equilibrium point of the system and we obtain, in the critical case, sufficient conditions in order to obtain an appropriate Normal Form. From this, we get conditions for the appearance of Hopf Bifurcation when the difference between the driving torque and the resisting torque is small. It was necessary to use the Bezout Theorem, a classical result of Algebraic Geometry, in the obtaining of the foregoing results. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A practical problem of synchronization of a non-ideal (i.e. when the excitation is influenced by the response of the system) and non-linear vibrating system was posed and investigated by means of numerical simulations. Two rotating unbalanced motors compose the mathematical model considered here with limited power supply mounted on the horizontal beam of a simple portal frame. As a starting point, the problem is reduced to a four-degrees-of-freedom model and its equations of motion, derived elsewhere via a Lagrangian approach, are presented. The numerical results show the expected phenomena associated with the passage through resonance with limited power. Further, for a two-to-one relationship between the frequencies associated with the first symmetric mode and the sway mode, by using the variation of torque constants, the control of the self-synchronization and synchronization (in the system) are observed at certain levels of excitations.
Resumo:
This paper considers the dynamics of two planets, as the planets B and C of the pulsar PSR B1257+12, near a 3/2 mean-motion resonance. A two-degrees-of-freedom model, in the framework of the general three-body planar problem, is used and the solutions are analyzed through surfaces of section and Fourier techniques in the full phase space of the system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)