925 resultados para damping dynamic mechanical analysis DMA CFRP electrospinning tan(delta)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling of carbon fibre/epoxy laminates is usually carried out using standard drills. However, it is necessary to adapt the processes and/or tooling as the risk of delamination, or other damages, is high. These problems can affect mechanical properties of produced parts, therefore, lower reliability. In this paper, four different drills – three commercial and a special step (prototype) – are compared in terms of thrust force during drilling and delamination. In order to evaluate damage, enhanced radiography is applied. The resulting images were then computational processed using a previously developed image processing and analysis platform. Results show that the prototype drill had encouraging results in terms of maximum thrust force and delamination reduction. Furthermore, it is possible to state that a correct choice of drill geometry, particularly the use of a pilot hole, a conservative cutting speed – 53 m/min – and a low feed rate – 0.025 mm/rev – can help to prevent delamination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis for the Degree of Master of Science in Biotechnology Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ao longo dos anos as estruturas existentes têm sido adaptadas para novas utilizações. No entanto, devido aos condicionalismos arquitetónicos e patrimoniais, a demolição e substituição por estruturas novas, pode-se tornar pouco viável, sendo cada vez mais exequível a opção de reforçar. A presente dissertação refere-se a uma dessas opções de reforço nomeadamente ao reforço de estruturas em betão armado com CFRP (Compósitos Reforçados com Fibras de Carbono), nomeadamente lajes e vigas. Os objetivos principais deste trabalho consistem em desenvolver uma proposta de critérios de dimensionamento de estruturas de betão armado reforçadas com CFRP tendo por base o disposto no Eurocódigo 2 comparando -a com o relatório técnico publicado “bulletin 14 - Externally bonded FRP reinforcement for RC structures”, da Fédération Internationale du Béton. Recorrendo à revisão bibliográfica, onde estão referidos temas como as características dos materiais de um sistema FRP, as suas técnicas de reforço e com uma exposição do comportamento das vigas reforçadas à flexão, particularmente no seu comportamento mecânico e modos de ruína associados a este tipo de reforço. Apresentam-se duas metodologias de cálculo para dimensionamento deste tipo de reforço para os diferentes estados limites, e aplicam-se a cada uma das metodologias de cálculo a uma viga com necessidade de reforço à flexão e ao corte, devido a um aumento de esforços provocado pelo aumento da sobrecarga. Desenvolve-se um estudo experimental onde se pretende avaliar a eficácia de um sistema de reforço à flexão com compósitos de CFRP colado externamente a uma viga e com diferentes taxas de reforço.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industrialization of traditional processes relies on the scientific ability to understand the empirical evidence associated with traditional knowledge. Cork manufacturing includes one operation known as stabilization, where humid cork slabs are extensively colonized by fungi. The implications of fungal growth on the chemical quality of cork through the analysis of putative fungal metabolites have already been investigated. However, the effect of fungal growth on the mechanical properties of cork remains unexplored. This study investigated the effect of cork colonization on the integrity of the cork cell walls and their mechanical performance. Fungal colonization of cork by Chrysonilia sitophila, Mucor plumbeus Penicillium glabrum, P. olsonii, and Trichoderma longibrachiatum was investigated by microscopy. Growth occurred primarily on the surface of the cork pieces, but mycelium extended deeper into the cork layers, mostly via lenticular channels and by hyphal penetration of the cork cell wall. In this first report on cork decay in which specific correlation between fungal colonization and mechanical proprieties of the cork has been investigated, all colonizing fungi except C. sitophila, reduced cork strength, markedly altering its viscoelastic behaviour and reducing its Young’s modulus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the waste reuse in polymer mortars and concrete. © 2011, Advanced Engineering Solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High speed trains, when crossing regions with abrupt changes in vertical stiffness of the track and/or subsoil, may generate excessive ground and track vibrations. There is an urgent need for specific analyses of this problem so as to allow reliable esimates of vibration amplitude. Full understanding of these phenomena will lead to new construction solutions and mitigation of undesirable features. In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. Results are expressed in terms of vertical displacement. Sensitivity analysis of the response amplitude is also performed. The analytical expressions presented herein, to the authors’ knowledge, have not been published yet. Although related to one-dimensional cases, they can give useful insight into the problem. Nevertheless, in order to obtain realistic response, vehicle- rail interaction cannot be omitted. Results and conclusions are confirmed using general purpose commercial software ANSYS. In conclusion, this work contributes to a better understanding of the additional vibration phenomenon due to vertical stiffness variation, permitting better control of the train velocity and optimization of the track design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passage of high-speed trains may induce high ground and track vibrations, which, besides increasing wheel, rail and track deterioration, may have a negative impact on the vehicle stability and on the passengers comfort. In this paper two distinct analyses are presented. The first one is dedicated to efficient decoupling of rail and soil vibrations by suggesting new interface materials in rail-sleeper fixing system, i.e. in the part where damping efficiency can be directly controlled and tested. The second analysis concerns with an adequate model of soils damping. Proper understanding and correct numerical simulation of this behaviour can help in suggesting soil improvement techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydraulic systems are dynamically susceptible in the presence of entrapped air pockets, leading to amplified transient reactions. In order to model the dynamic action of an entrapped air pocket in a confined system, a heuristic mathematical formulation based on a conceptual analogy to a mechanical spring-damper system is proposed. The formulation is based on the polytropic relationship of an ideal gas and includes an additional term, which encompasses the combined damping effects associated with the thermodynamic deviations from the theoretical transformation, as well as those arising from the transient vorticity developed in both fluid domains (air and water). These effects represent the key factors that account for flow energy dissipation and pressure damping. Model validation was completed via numerical simulation of experimental measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research aims at analysing the mechanical performance of concrete with recycled aggregates (RA) from construction and demolition waste (CDW) from various locations in Portugal. First the characteristics of the various aggregates (natural and recycled) used in the production of concrete were thoroughly analysed. The composition of the RA was determined and several physical and chemical tests of the aggregates were performed. In order to evaluate the mechanical performance of concrete, compressive strength (in cubes and cylinders), splitting tensile strength, modulus of elasticity and abrasion resistance tests were performed. Concrete mixes with RA from CDW from several recycling plants were evaluated, in order to understand the influence that the RA's collection point, and consequently their composition, has on the characteristics of the mixes produced. The analysis of the mechanical performance allowed concluding that the use of RA worsens most of the properties tested, especially when fine RA are used. On the other hand, there was an increase in abrasion resistance when coarse RA were used. In global terms, the use of this type of aggregates, in limited contents, is viable from a mechanical viewpoint. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functionally graded composite materials can provide continuously varying properties, which distribution can vary according to a specific location within the composite. More frequently, functionally graded materials consider a through thickness variation law, which can be more or less smoother, possessing however an important characteristic which is the continuous properties variation profiles, which eliminate the abrupt stresses discontinuities found on laminated composites. This study aims to analyze the transient dynamic behavior of sandwich structures, having a metallic core and functionally graded outer layers. To this purpose, the properties of the particulate composite metal-ceramic outer layers, are estimated using Mod-Tanaka scheme and the dynamic analyses considers first order and higher order shear deformation theories implemented though kriging finite element method. The transient dynamic response of these structures is carried out through Bossak-Newmark method. The illustrative cases presented in this work, consider the influence of the shape functions interpolation domain, the properties through-thickness distribution, the influence of considering different materials, aspect ratios and boundary conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sandwich structures with soft cores are widely used in applications where a high bending stiffness is required without compromising the global weight of the structure, as well as in situations where good thermal and damping properties are important parameters to observe. As equivalent single layer approaches are not the more adequate to describe realistically the kinematics and the stresses distributions as well as the dynamic behaviour of this type of sandwiches, where shear deformations and the extensibility of the core can be very significant, layerwise models may provide better solutions. Additionally and in connection with this multilayer approach, the selection of different shear deformation theories according to the nature of the material that constitutes the core and the outer skins can predict more accurately the sandwich behaviour. In the present work the authors consider the use of different shear deformation theories to formulate different layerwise models, implemented through kriging-based finite elements. The viscoelastic material behaviour, associated to the sandwich core, is modelled using the complex approach and the dynamic problem is solved in the frequency domain. The outer elastic layers considered in this work may also be made from different nanocomposites. The performance of the models developed is illustrated through a set of test cases. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally expandable particles (TEPs) are used in a wide variety of applications by industry mainly for weight reduction and appearance improvement for thermoplastics, inks, and coatings. In adhesive bonding, TEPs have been used for recycling purposes. However, TEPs might be used to modify structural adhesives for other new purposes, such as: to increase the joint strength by creating an adhesive functionally modified along the overlap of the joint by gradual heating and/or to heal the adhesive in case of damage. In this study, the behaviour of a structural polyurethane adhesive modified with TEPs was investigated as a preliminary study for further investigations on the potential of TEPs in adhesive joints. Tensile bulk tests were performed to get the tensile properties of the unmodified and TEPs-modified adhesive, while Double Cantilever Beam (DCB) test was performed in order to evaluate the resistance to mode I crack propagation of unmodified and TEPs-modified adhesive. In addition, in order to investigate the behaviour of the particles while encapsulated in adhesives, a thermal analysis was done. Scanning electron microscopy (SEM) was used to examine the fracture surface morphology of the specimens. The fracture toughness of the TEPs-modified adhesive was found to increase by addition of TEPs, while the adhesive tensile strength at yield decreased. The temperature where the particles show the maximum expansion varied with TEPs concentration, decreasing with increasing the TEPs content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho final de Mestrado para a obtenção do grau de mestre em Engenharia Civil