997 resultados para damage depth
Resumo:
National Natural Science Foundation of China [40701021, 40625002, 40331013]; National Knowledge Innovation Program of Chinese Academy of Sciences [KZCX2-YW-315-2]
Resumo:
The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.
Resumo:
The stress transfer from broken fibers to unbroken fibers in fiber-reinforced thermosetting polymer-matrix composites and thermoplastic polymer-matrix composites was studied using a detailed finite element model. In order to check the validity of this approach, an epoxy-matrix monolayer composite was used as thermosetting polymer-matrix composite and a polypropylene (PP)-matrix monolayer composite was used as thermoplastic polymer-matrix composite, respectively. It is found that the stress concentrations near the broken fiber element cause damage to the neighboring epoxy matrix prior to the breakage of other fibers, whereas in the case of PP-matrix composites the fibers nearest to the broken fiber break prior to the PP matrix damage, because the PP matrix around the broken fiber element yields. In order to simulate composite damage evolution, a Monte Carlo technique based on a finite element method has been developed in the paper. The finite element code coupled with statistical model of fiber strength specifically written for this problem was used to determine the stress redistribution. Five hundred samples of numerical simulation were carried out to obtain statistical deformation and failure process of composites with fixed fiber volume fraction.
Resumo:
The x-ray and gamma-ray induced damage in BaLiF3 crystallites and its suppression by rare earth ion doping have been studied by electron spin resonance and thermally stimulated luminescence methods. It has been found that the x-ray irradiation damage is light and can be erased easily. This shows that the BaLiF3 crystallite is an ideal host for x-ray storage material. But the damage induced by gamma-ray has been found to be relatively hard to recover; however the gamma-ray irradiation hardness can be improved by rare earth (e.g., La3+, Yb3+) ion doping. So the BaLiF3 is also promising material for being used in detection of high-energy particles (e.g., gamma-ray).
Resumo:
A comparison of radiation damage to nylon 1010 (denoted nylon-a) and nylon 1010 containing neodymium oxide (Nd2O3) (denoted nylon-b) was made by DSC, WAXD, ESR and the determination of gel fractions. The results show that radiation damage to nylon-b is delayed, and radiation damage to nylon-a is more severe than that to nylon-b, due to the protection of the fold surface of the lamellae. Furthermore, the fact that the damage begins with the fold surface of the lamellae is confirmed. (C) 1996 Elsevier Science Limited
Resumo:
In the present work we attempt to settle the controversy on the district wherein the radiation induced reaction preferentially occurs through examining the structural changes of the irradiated polyamide-1010 specimens on both the crystallographic and the supermolecular level by using WAXD and SAXS techniques. Experimental results indicated that the chain crosslinking and scission of the irradiated specimens occur mainly in the amorphous region and on the crystal surface (or interphase), and extend into the inner portion of the crystal with increasing radiation dose.
Resumo:
Radiation effects on polyamide-1010 specimens having various states of aggregation were studied using wide angle X-ray diffraction, electron spin resonance, calorific and sol measurement techniques. Experimental results indicated that chain crosslinking
Resumo:
The radiation induced depression of the melting and crystallization temperatures of PTFE irradiated at various temperatures followed by heat treatment at 380-degrees-C, and their relationship to structural changes, were investigated. The G(-units) values obtained in this work are different from those of samples which have not undergone heat treatment and seem to be more closely associated with radiation induced branched structures.
Resumo:
This paper studies gamma-radiation induced lamellar damage mechanism of poly(vinylidene fluoride), using wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), electronic paramagnetic resonance (EPR) and gel fraction determination. We believe that it is ''lamellae core damage'' rather than ''lamellae surface damage'' that results in the decrease of the crystallinity.
Resumo:
There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incidents caused by passing ships, is under development to acquire data from this area. This device is based on a taut single point mid-water mooring system. It incorporates a small, instrumented vertically profiling float attached via an electromechanical cable to a winch integral with the main subsurface flotation. On a pre-set schedule, the instrument float with sensors is winched up to the surface if there is no strip passing by, which is defined by an on-board miniature sonar. And it can be immediately winched down to a certain depth if the sonar sensor finds something is coming. Since, because Of logistics, the area can only be visited once for a long time and a minimum of 10 times per day profiles are desired, energy demands are severe. To respond to these concerns, the system has been designed to conserve a substantial portion of the potential energy lost during the ascent phase of each profile and subsequently use this energy to pull the instrument down. Compared with the previous single-point layered measuring mode, it is advanced and economical. At last the paper introduces the test in the South China Sea.
Resumo:
Wave breaking in the open ocean and coastal zones remains an intriguing yet incompletely understood process, with a strong observed association with wave groups. Recent numerical study of the evolution of fully nonlinear, two-dimensional deep water wave groups identified a robust threshold of a diagnostic growth-rate parameter that separated nonlinear wave groups that evolved to breaking from those that evolved with recurrence. This paper investigates whether these deep water wave-breaking results apply more generally, particularly in finite-water-depth conditions. For unforced nonlinear wave groups in intermediate water depths over a flat bottom, it was found that the upper bound of the diagnostic growth-rate threshold parameter established for deep water wave groups is also applicable in intermediate water depths, given by k(0) h greater than or equal to 2, where k(0) is the mean carrier wavenumber and h is the mean depth. For breaking onset over an idealized circular arc sandbar located on an otherwise flat, intermediate-depth (k(0) h greater than or equal to 2) environment, the deep water breaking diagnostic growth rate was found to be applicable provided that the height of the sandbar is less than one-quarter of the ambient mean water depth. Thus, for this range of intermediate-depth conditions, these two classes of bottom topography modify only marginally the diagnostic growth rate found for deep water waves. However, when intermediate-depth wave groups ( k(0) h greater than or equal to 2) shoal over a sandbar whose height exceeds one-half of the ambient water depth, the waves can steepen significantly without breaking. In such cases, the breaking threshold level and the maximum of the diagnostic growth rate increase systematically with the height of the sandbar. Also, the dimensions and position of the sandbar influenced the evolution and breaking threshold of wave groups. For sufficiently high sandbars, the effects of bottom topography can induce additional nonlinearity into the wave field geometry and associated dynamics that modifies the otherwise robust deep water breaking-threshold results.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.