959 resultados para coral sol
Resumo:
The aggregation, gelation, and aging of urea-cross-linked siloxane-poly(oxyethylene) nanohybrids [(U600)-n] containing two different amounts of europium triflate initially dissolved in an ethanol-water mixture were investigated by in situ small-angle X-ray scattering (SAXS). For both low (n = [O]/[Eu] = 80) and high (n = 25) europium contents, the SAXS intensity was attributed to the formation of siloxane clusters of about 8-11 Angstrom in size. Siloxane cluster formation and growth is a rapid process in hybrids with low Eu contents and slow in Eu-rich hybrids. An additional contribution to the scattering intensity at very low angles was attributed to the formation of a coarse structure level. At this secondary level, the structure can be described as a set of dense domains containing siloxane clusters embedded in a depleted matrix composed of unfolded polymer chains and solvent. By fitting a theoretical function for this model to the experimental SAXS curves, relevant structural parameters were determined as functions of time during the sol-gel transition and gel aging. For hybrids with low europium contents (n = 80), the size of the siloxane clusters remains essentially invariant, whereas the dense segregation domains progressively grow. In hybrids with high doping contents (n = 25), the preponderant structure variation during the first stages of the sol-gel transformation is the slow growth of siloxane clusters. For these hybrids, the segregation of siloxane clusters forming dense domains occurs only during advanced stages of the process.
Resumo:
Titanium oxide (TiO2) is a good candidate for support of hydrotreating catalysts but has the disadvantage of presenting a low surface area and a poor thermal stability when compared with Al2O3. A mixed TiO2-Al2O3 support was proposed as an alternative that is expected to be free from these drawbacks. The variation during firing of the nanoporous texture of supports composed of TiO2-Al2O3, TiO2 and Al2O3 was studied by small angle X-ray scattering (SAXS). The supports were prepared by the sol-gel route using Ti and Al isopropoxides. We have particularly analyzed the effects of acid and basic hydrolysis on the nanostructural features of catalyst supports fired at different temperatures. The nanopore radius distribution functions were determined from SAXS results assuming a simple model of spherical nanopores embedded in a homogeneous solid matrix. The modal pore radius in both pure TiO2 and pure Al2O3 supports grows from 1.3 to 2.2 nm as the firing temperature increases from 673 to 973 K. on the other hand, the modal pore radius in the mixed TiO2-Al2O3 support remains below 1.2 nm over the same range of firing temperatures. These results demonstrate the good thermal stability of the nanoporous texture of mixed TiO2-Al2O3 supports.
Resumo:
This work describes the chemical modification by Tiron(R) molecules of the surface of SnO2 nanoparticles used to prepare nanoporous membranes. Samples prepared with Tiron(R) content between 1 and 20 wt% and fired at 400 C were characterised by X-Ray Powder Diffraction (XRPD), Extended X-ray Absorption Fine Structure (EXAFS), N-2 adsorption isotherms analysis and permeation experiments. XRPD and EXAFS results show a continuous reduction of crystallite size by increasing the Tiron(R) contents until 7.5 wt%. The control exercised by Tiron(R) modifying agent in crystallite growth allows the fine tuning of the average pore size that can be screened from 0.4 to 4 nm as the amount of grafted molecules decreases from 10 to 0 wt%. In consequence, the membrane cut-off can be screened from 1500 to 3500 g.mol(-1).
Resumo:
We have pointed Out that. zinc-based particles obtained from zinc acetate sol-gel route is a mixture of quantum-sized ZnO nanoparticles, zinc acetate, and zinc hydroxide double salt (Zn-HDS). Aiming the knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, the thermohydrolysis of ethanolic zinc acetate solutions induced by lithium hydroxide ([LiOH]/[Zn2+] = 0.1) or water ([H2O]/[Zn2+] = 0.05) addition was investigated at different isothermal temperatures (40, 50, 60 and 70 degrees C) by in situ measurements of turbidity, UV-vis absorption spectra and extended X-ray absorption fine structures (EXAFS). Only the growth of ZnO nanoparticles was observed in sol prepared with LiOH, while a two-step process was observed in that prepared with water addition, leading the fast growth of Zn-HDS and the formation of ZnO nanoparticles at advanced stage. A mechanism of dissolution/reprecipitation governed by the water/ethanol proportion is proposed to account for relative amount of ZnO. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work considers some aspects of the chemistry involved in the preparation and description of silicon oxide functionalized by sol-gel process. In this work we studied the synthesis and measured the properties of silicon oxide functionalized with 3-chloropropyl, through a sol-gel process. Thermogravimetic analysis, infrared spectra, and elemental analyses were measured. The samples were prepared in the following proportions of tetraethylorthosilicate (TEOS): 3-chloropropyl trimethoxisilane molar ratio: 1:0, 1:1, 2:1, 3:1 and 4:1. The thermogravimetric data for the resulting materials established the 'minimum formulae' 2:0, 3:1, 4.1, 7:1 and 11:1, respectively. As expected, the relative amount of water is inversely proportional to the presence of propyl groups. Infrared data show Si-C and -CH2-vibration modes at 1250 to 1280 and 2920 to 2940 cm(-1), respectively. Thermogravimetric data and infrared spectra showed that inorganic polymers contained organic polymers. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Porphyrin was incorporated in a silicate network, via a covalent bond, by grafting a functional group with 3-aminopropyltriethoxysilane, using a sol-gel process. We have carried out the synthesis and measured the absorption spectra, nuclear magnetic resonance spectra, infrared (IR) spectra, luminescence spectra and lifetime of these hybrid silicates, porphyrinosilicas. These samples contained the following free-base porphyrins: meso-tetrakis-p-chlorobenzoylporphyrin, meso-tetrakis-2,6-dichloro-3-chlorosulfonylphenylporphyrin. The obtained porphyrinosilicas have similar absorption and luminescence spectra to the free base porphyrins in solution. IR spectra confirm the formation of monomeric species. Lifetime measurement for porphyrinosilica reveals that 32% +/- 2% of porphyrin is covalently bonded to the silica network. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Electro-optical properties of sol-gel derived 2 mol% antimony or niobium doped tin dioxide films have been measured. The electron density has been calculated considering all the relevant scattering mechanisms and experimental conductivity data measured in the range -197 to 25 degrees C. The results support the hypothesis that both ionised impurity scattering and grain boundary scattering have comparable effects in the resistivity of coatings, for free electron density congruent to 5 x 10(18) cm(-3). We have measured variation of photoconductivity excitation with wavelength using xenon and deuterium lamp as light sources. Results show that the main band in the photoconductivity spectrum is dependent on the spectral light source emission, the excitation peak reaching 5 eV (deuterium lamp). This band is due to the recombination process involving oxygen species and photogenerated electron-hole pairs. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work describes the synthesis of a first-generation iron porphyrin catalyst entrapped in a silica matrix by the sol-gel route, leading to spherical particles. The catalyst was synthesized by the method of Stober, through hydrolysis and condensation of the alkoxysilane TEOS in a mixture of alcohol, water and ammonia, in the presence of the iron porphyrin Fe(TPP)Cl. The relation between particle morphology and catalytic activity of the different Fe(TPP)-SiO2, obtained using different H2O/silane molar ratios and ammonia concentrations in the xerogel syntheses, was studied.The obtained catalysts were characterized by UV-vis spectroscopy, NMR Si-29. thermogravimetric analysis and transmission electron microscopy. Their ability to catalyze (Z)-cyclooctene epoxidation and cyclohexane oxidation was tested using iodosylbenzene as oxygen donor; the oxidation products were analyzed by gas chromatography and the catalysts obtained in a form of particles spherical and monodispersed showed to be a promising catalytic system for selective oxidation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The surface properties of SnO2 nanoparticles were modified by grafting ionic (Tiron (R). (OH)(2)C6H2(SO3Na)(2)(H2O)-H-.) or non-ionic (Catechol (R). C6H4-1,2-(OH)(2)) capping Molecules during aqueous sol-gel processing to improve the redispersibility of powdered xerogel. The effect of the amount of grafted organic molecules on the redispersibility of powders in aqueous solution at several basic pH values was Studied. The nanostructural features of the colloidal suspensions were analyzed by small angle X-ray scattering (SAXS) measurements. Irrespective of the nature and amount of grafted molecules, complete redispersion was obtained in aqueous solution at pH = 13. The redispersion at pH = 11 results in a mixture of dispersed primary particles and aggregates. The proportion of well dispersed nanoparticles and aggregates (and their average size) can be tuned by the quantity of grafted ionic molecules.
Resumo:
We have pointed out that zinc based particles obtained from ethanolic solution of a zinc acetate derivative (zinc oxy-acetate, Zn4O(Ac)(6)) are a mixture of nanometer sized ZnO, zinc oxy-acetate, and zinc hydroxide double salt (Zn-HDS). The knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, and the evolution of Zn species in reaction medium was monitored in situ during 14 h by simultaneous measurements of UV-vis absorption and extended X-ray absorption fine structures (EXAFS) spectra. This spectroscopic monitoring was initialized just after the addition of an ethanolic lithium hydroxide solution ([LiOH]/[Zn] = 0. 1) to the reaction medium kept under controlled temperature (40 degrees C). This study points out the first direct evidence of the reaction between ZnO nanoparticles and unreacted zinc oxy-acetate to form a Zn-HDS phase. The dissolution of ZnO and the reprecipitation of Zn-HDS are induced by the gradual release of water mainly produced by ethanol esterification well evidenced by gas chromatography coupled to mass spectroscopy and FT-IR measurements.
Resumo:
Thin films of pure RuO2 and IrO2 and mixed Ru0.5Ir0.5O2 oxide modified with Pt particles were prepared by a sol-gel method in the form of thin films of similar to 2 mu m thickness on Ti substrates. Surface morphology of these Pt- modified oxides was examined by scanning electron microscopy and was found to exhibit a significant influence of the chemical composition of the oxide matrix. Element mapping showed homogeneous distribution of the metals. X- ray diffraction and X- ray photoelectron spectroscopy analyses showed that these films consist of metallic Pt particles dispersed in an oxide matrix. Cyclic voltammetry in acid solutions showed that the sol- gel prepared layers have relatively high Pt surface areas. The electrocatalytic activity of these materials toward the anodic oxidation of formaldehyde and methanol was compared in terms of onset potential and current density and was found to follow the sequence: Pt- Ru0.5Ir0.5O2/ Ti > Pt- RuO2/ Ti > Pt- IrO2/ Ti.
Resumo:
Yttrium-aluminum oxides are interesting compounds and they have been extensively used as host for lasers and phosphors, due to their stable physical and chemical properties. The fabrication of yttrium-aluminum garnet (YAG) has been investigated thoroughly. Single-crystal YAG is expensive and to produce it a new way has been investigated. This process consists of modifying the methodology of reagents mixture and the process of heating them. The microwave irradiation is used to heat-treat the oxide mixture. The traditional synthesis of YAG powders occurs through the reaction of aluminum and yttrium powders at high temperatures. With this work we investigated the preparation of YAG by non-hydrolytic sol-gel route as an alternative methodology to obtain yttrium-aluminum matrix from inorganic precursors (yttrium and aluminum chloride). The preparation of the gel was carried out in an oven-dried glassware. The AlCl3, YCl3 and ethanol were reacted in reflux under argon atmosphere. Europium III chloride was added as a structural probe. The powder was dried and heat-treated in modified microwaves. The samples were pre-treated at 50 and 800 C during I h and then heated in microwaves for 30 s, 2 and 4 min. The formation process and structure of the powders were studied by means of X-ray diffraction (XRD), photoluminescence (PL) and transmission electronic microscopy (TEM). XRD presents only picks corresponding to the YAG phase and confirmed by TEM. PL date showed that the YAG phase was formed in 2 min with the samples pre-treated at 50 C. For the samples pretreated at 800 degrees C, the YAG phase appears in 30s. The excitation spectra present a maximum of 394 nm corresponding to the L-5(6) level and emission spectra of Eu III ion present bands characteristic transitions arising from the D-5(0) -> F-7(J) (J= 1, 2, 3, 4) monifolds excited at their maximum. The magnetic dipole D-5(0) -> F-7(1) transition presents more intensity than the electric dipole D-5(0) -> F-7(2) transition. This methodology showed efficiency in obtaining YAG phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Traditional hydrotreating catalysts are constituted by molybdenum deposited on Al2O3 promoted by nickel and phosphorous. Several studies have shown that TiO2-Al2O3 mixed oxides are excellent supports for the active phases. Results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, the titanium one chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal molar ratio [Ti]/[Ti+Al] on the microstructural features of nanometric particles was analyzed by X-Ray Diffraction, N-2 Adsorption Isotherms and Transmission Electron Microscopy. The catalytic activity of Mo impregnated supports was evaluated using the thiophene hydrodesulfurization at different temperatures and atmospheric pressure. The pores size distribution curve moves from the micropores to the mesopores by increasing the Ti contents, allowing the fine tuning of average size from 2.5 to 6 nm. Maximal (367 m(2).g(-1)) and minimal (127 m(2).g(-1)) surface area were found for support containing [Ti]/[Ti+Al] ratio equal to 0.1 and 1, respectively. The good mesopore texture of alumina-titania support with [Ti]/[Ti+Al] molar ratio between 0.3 and 0.5 was found particularly valuable for the preparation of well dispersed MoS2 active phase, leading to HDS catalyst with somewhat higher activity than that prepared using a commercial alumina support.
Resumo:
Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.