945 resultados para continuumreaction-diffusion equations, mathematical biology, finite volumemethod, advection-dominated, partial differential equation, numerical simulation, diabetes
Resumo:
In this work we discuss some exactly solvable Klein-Gordon equations. We basically discuss the existence of classes of potentials with different nonrelativistic limits, but which shares the intermediate effective Schroedinger differential equation. We comment about the possible use of relativistic exact solutions as approximations for nonrelativistic inexact potentials. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present a model to describe inclusive meson production in e+e- reactions based on a quark cascade approach whose formulation is put in terms of diffusion equations for three quark flavors (u, d, s). These equations are solved by using a formalism previously developed for the problem of the electromagnetic cascade generated in the atmosphere by cosmicray interactions. The obtained solutions are given in terms of a combination of power-law functions whose profiles are adequate to describe the characteristics observed in the inclusive spectrum of mesons.
Resumo:
This paper deals with the study of the stability of nonautonomous retarded functional differential equations using the theory of dichotomic maps. After some preliminaries, we prove the theorems on simple and asymptotic stability. Some examples are given to illustrate the application of the method. Main results about asymptotic stability of the equation x′(t) = -b(t)x(t - r) and of its nonlinear generalization x′(t) = b(t) f (x(t - r)) are established. © 1998 Kluwer Academic Publishers.
Resumo:
We present an investigation of the nonlinear partial differential equations (PDE) which are asymptotically representable as a linear combination of the equations from the Camassa-Holm hierarchy. For this purpose we use the infinitesimal transformations of dependent and independent variables of the original PDE. This approach is helpful for the analysis of the systems of the PDE which can be asymptotically represented as the evolution equations of polynomial structure. © 2000 American Institute of Physics.
Resumo:
Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.
Resumo:
In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
Resumo:
A study was conducted on the dynamics of 2D and 3D Bose-Einstein condensates in the case when the scattering length in the Gross-Pitaevskii (GP) equation which contains constant (dc) and time-variable (ac) parts. Using the variational approximation (VA), simulating the GP equation directly, and applying the averaging procedure to the GP equation without the use of the VA, it was demonstrated that the ac component of the nonlinearity makes it possible to maintain the condensate in a stable self-confined state without external traps.
Resumo:
This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.
Resumo:
The aim of this paper is to present a photogrammetric method for determining the dimensions of flat surfaces, such as billboards, based on a single digital image. A mathematical model was adapted to generate linear equations for vertical and horizontal lines in the object space. These lines are identified and measured in the image and the rotation matrix is computed using an indirect method. The distance between the camera and the surface is measured using a lasermeter, providing the coordinates of the camera perspective center. Eccentricity of the lasermeter center related to the camera perspective center is modeled by three translations, which are computed using a calibration procedure. Some experiments were performed to test the proposed method and the achieved results are within a relative error of about 1 percent in areas and distances in the object space. This accuracy fulfills the requirements of the intended applications. © 2005 American Society for Photogrammetry and Remote Sensing.
Resumo:
We study the necessary conditions for obtaining infrared finite solutions from the Schwinger-Dyson equation governing the dynamics of the gluon propagator. The equation in question is set up in the Feynman gauge of the background field method, thus capturing a number of desirable features. Most notably, and in contradistinction to the standard formulation, the gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. Various subtle field-theoretic issues, such as renormalization group invariance and regularization of quadratic divergences, are briefly addressed. The infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is presented.
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.
Resumo:
Once defined the relationship between the Starter Motor components and their functions, it is possible to develop a mathematical model capable to predict the Starter behavior during operation. One important aspect is the engagement system behavior. The development of a mathematical tool capable of predicting it is a valuable step in order to reduce the design time, cost and engineering efforts. A mathematical model, represented by differential equations, can be developed using physics laws, evaluating force balance and energy flow through the systems degrees of freedom. Another important physical aspect to be considered in this modeling is the impact conditions (particularly on the pinion and ring-gear contact). This work is a report of those equations application on available mathematical software and the resolution of those equations by Runge-Kutta's numerical integration method, in order to build an accessible engineering tool. Copyright © 2011 SAE International.
Resumo:
An algorithm for real-time and onboard orbit determination applying the Extended Kalman Filter (EKF) method is developed. Aiming at a very simple and still fairly accurate orbit determination, an analysis is performed to ascertain an adequacy of modeling complexity versus accuracy. The minimum set of to-be-estimated states to reach the level of accuracy of tens of meters is found to have at least the position, velocity, and user clock offset components. The dynamical model is assessed through several tests, covering force model, numerical integration scheme and step size, and simplified variational equations. The measurement model includes only relevant effects to the order of meters. The EKF method is chosen to be the simplest real-time estimation algorithm with adequate tuning of its parameters. In the developed procedure, the obtained position and velocity errors along a day vary from 15 to 20 m and from 0.014 to 0.018 m/s, respectively, with standard deviation from 6 to 10 m and from 0.006 to 0.008 m/s, respectively, with the SA either on or off. The results, as well as analysis of the final adopted models used, are presented in this work. © 2013 Ana Paula Marins Chiaradia et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)