944 resultados para content production
Resumo:
Bee pollen has been used for many years in both traditional medicine and supplementary nutrition, as well as in alternative diets, mainly due to its nutritional properties and health benefits. Bee pollen production is a recent activity in Brazil, having begun in the late 1980s. However, the country has the potential of being a large world producer of high quality pollen, particularly because of the great diversity of tropical flora and the resistance of the Brazilian Apis mellifera bee races. Thirty-six samples of bee pollen from the Southern region of Brazil were analyzed regarding pollen types and physicochemical and nutritional composition. Only one sample was considered monofloral, which was exclusively composed by pollen from the Asteraceae family). The State of Parana showed a greater variety of pollen types, 18 in total, representing 82% of the total number identified in this study. The bee pollen in the States of Rio Grande do Sul and Parana showed a higher number of samples with humidity content above the standard permitted by the Brazilian legislation, i.e. over 4%. The bee pollen was characterized by its high protein content with average values of 20.47%. The analysis regarding humidity, lipids and sugar showed no statistical differences among the samples (p<0.05). The pollen samples had a high concentration of reducible sugars (48%). The predominant minerals in the samples PR, SC and RS were phosphorus (7102.29, 6873.40, 6661.73 mg/kg of pollen), followed by potassium (5383.73, 4997.77, 4773.26 mg/kg of pollen), calcium (1179.05, 961.93, 848.36 mg/kg of pollen) and magnesium (818.02, 679.01, 725.89 mg/kg of pollen). Statistical analysis (Tukey test) demonstrated no significant difference between the contents of calcium, copper, iron, phosphorus and sodium in the pollen samples of the South of Brazil. However, the samples from the State of Parana contained the highest contents of potassium and differed statistically from the samples of the State of Rio Grande do Sul.
Resumo:
Soybean is an important Brazilian agricultural commodity that contains a high concentration of isoflavones. Many studies showed that isoflavones are active in the prevention of many human diseases. However, the correct processing techniques used to prepare the soy foodstuffs are important to maintain the active forms. The objective of this study was to evaluate the effect of gamma irradiation on the isoflavone contents of the defatted soybean flour when compared with soybean molasses, a derivative from the soybean food production. After extracting phenolic compounds with methanol aqueous solution (80%), isoflavones were detected by reverse-phase high-performance liquid chromatography/diode-array detector. The radiation doses of 2 and 5 kGy presented a small effect on the isoflavones content of defatted soy flour. Samples irradiated at 50 kGy showed lower isoflavone contents. The observed reduction in the concentration of isoflavones-daidzein, glycitein and genistein-induced by gamma radiation in soy molasses was not significant in defatted soy flour, thus suggesting that isoflavones in defatted soy flour were not eliminated by gamma radiation at rates up to 50 kGy.
Resumo:
Saccharomyces cerevisiae hexokinase-less strains were produced to study the production of ethanol and fructose from sucrose. These strains do not have the hexokinases A and B. Twenty-three double-mutant strains were produced, and then, three were selected for presenting a smaller growth in yeast extract-peptone-fructose. In fermentations with a medium containing sucrose (180.3 g L-1) and with cell recycles, simulating industrial conditions, the capacity of these mutant yeasts in inverting sucrose and fermenting only glucose was well characterized. Besides that, we could also see their great tolerance to the stresses of fermentative recycles, where fructose production (until 90 g L-1) and ethanol production (until 42.3 g L-1) occurred in cycles of 12 h, in which hexokinase-less yeasts performed high growth (51.2% of wet biomass) and viability rates (77% of viable cells) after nine consecutive cycles.
Resumo:
Color, pH, shear force, water-holding capacity, chemical composition, cholesterol content, and fatty acid profile from conventional, free-range and alternative broiler breast meat were determined in order to evaluate differences in the quality of broiler meat produced under different systems. Broilers reared in a conventional system had the highest lipid content (1.3%) but lower proportions of polyunsaturated (17.3%) and omega-3 fatty acids (0.3%) (p<0.05) compared to free-range and alternative broilers. On the other hand, free-range broilers had a lower cholesterol content (48.6 mg center dot 100 g(-1)) and lower pH (5.7 1) while broilers raised in an alternative system had a higher shear force (2.33 kgf) and lower yellowness value (b* value = 3.15) when compared to the other rearing systems (p<0.05).
Resumo:
The aim of this study was to evaluate the production and the structural and physicochemical properties of RS obtained by molecular mass reduction (enzyme or acid) and hydrothermal treatment of chickpea starch. Native and gelatinized starch were submitted to acid (2 M HCl for 2.5 h) or enzymatic hydrolysis (pullulanase, 40 U/g per 10 h), autoclaved (121 degrees C/30 min), stored under refrigeration (4 degrees C/24 h), and lyophilized. The hydrolysis of starch increased the RS content from 16% to values between 20 and 32%, and the enzymatic treatment of the gelatinized starch was the most efficient. RS showed an increase in water absorption and water solubility indexes due to hydrolytic and thermal process. The processes for obtaining RS changed the crystallinity pattern from C to B. Hydrolysis treatments caused an increase in relative crystallinity due to the greater retrogradation caused by the reduction in MW. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of molecules. The viscosity seemed to be inversely proportional to the RS content in the sample.
Resumo:
This study examines the effects of partially or completely replacing pork backfat with soybean oil in mortadella production. Mortadella sausages of various formulations showed no differences (P > 0.05) in any of the technological and physico-chemical parameters evaluated (process yield, shear force, pH, water activity and proximate composition). When compared to products made with pork backfat, those made with vegetable oil had a higher unsaturated fatty acid content (P <= 0.05) and a similar cholesterol content (P > 0.05). Products made with vegetable oil scored lower (P <= 0.05) than those made with pork fat on all of the evaluated sensory attributes (colour, odour, flavour, texture and overall acceptability).
Resumo:
Tabasco pepper production with CO(2) application using drip irrigation. Application of CO(2) through water reduces the soil solution pH, causing variations in nutrient mobility and consequent effects on the absorption. The objective of this study was to analyze the effects of carbon dioxide rates supplied by drip irrigation in the production of Capsicum frutescens L. crop. A randomized block design with four treatments and eight replications was used. The treatments were four rates of CO(2): 0 (T1), 451.95 (T2); 677.93 (T3) and 903.92 (T4) kg ha(-1). The fruits were counted and weighed; the length and the diameter were obtained from an average of 20 fruits per plant, randomly taken, from each treatment in the plot. The quadratic effect (p < 0.01) occurred for CO(2) on the yield and there was quadratic effect (p < 0.05) of the rates on the number of fruits. There were no effects of CO(2) rates on the green matter, dry matter and fruit length and diameter. The T2 treatment provided greater yield and higher number of fruits per plant with an increase of 16 and 26%, respectively in relation to T1 (without CO(2)). CO(2) application favored the increase in the yield because of the greater number of fruits per plant in the Tabasco pepper crop.
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Long-term vegetation restoration carried out on the slopes of the Loess Plateau of China employed different spatial and temporal land-use patterns but very little is known about the effects of these patterns on soil water-content variability. For this study the small Donggou catchment was selected to investigate soil water-content distributions for three spatial scales, including the entire catchment area, sampling transects, and land-use systems. Gravimetric soil water contents were determined incrementally to a soil depth of 1.20 m, on 10 occasions from April to October, 2007, at approximately 20-day intervals. Results indicated that soil water contents were affected by the six land-use types, resulting in four distinct patterns of vertical distribution of soil moisture (uniform, increasing, decreasing, and fluctuating with soil depth). The soil water content and its variation were also influenced in a complex manner by five land-use patterns distributed along transects following the gradients of five similar slopes. These patterns with contrasting hydrological responses in different components, such as forage land (alfalfa)-cropland-shrubland or shrubland-grassland (bunge needlegrass)-cropland-grassland, showed the highest soil water-content variability. Soil water at the catchment scale exhibited a moderate variability for each measurement date, and the variability of soil water content decreased exponentially with increasing soil water content. The minimum sample size for accurate data for use in a hydrological model for the catchment, for example, required many more samples for drier (69) than for wet (10) conditions. To enhance erosion and runoff control, this study suggested two strategies for land management: (i) to create a mosaic pattern by land-use arrangement that located units with higher infiltration capacities downslope from those with lower soil infiltrabilities; and (ii) raising the soil-infiltration capacity of units within the spatial mosaic pattern where possible.
Resumo:
In greenhouse potato cultivation, mineral nutrition is one of the main factors contributing to high yields and better product quality. Knowledge about the amount of nutrients accumulated in the plants at each growing phase provides important information that helps the establishment of a more balanced fertilizer application. The objective of this research was to determine the time course of macronutrients uptake and accumulation in potato plants for seed-tuber production, grown in nutrient solution. The experiment was carried out in a greenhouse, using in vitro material from the pre-basic category of the `Atlantic` variety. The plants were collected weekly from 14 days after transplanting (DAT) until 70 DAT The experimental design was a completely randomized block with 9 treatments to sampling times and four replicates. The highest nutrient requirement in the plant shoot occurred at the periods between 28 and 56 DAT while in the tubers it was after 49 DAT The maximum accumulation sequence of macronutrients was K > N > S > Ca > P > Mg.
Resumo:
The knowledge of the relationship between spatial variability of the surface soil water content (theta) and its mean across a spatial domain (theta(m)) is crucial for hydrological modeling and understanding soil water dynamics at different scales. With the aim to compare the soil moisture dynamics and variability between the two land uses and to explore the relationship between the spatial variability of theta and theta(m), this study analyzed sets of surface theta measurements performed with an impedance soil moisture probe, collected 136 times during a period of one year in two transects covering different land uses, i.e., korshinsk peashrub transect (KPT) and bunge needlegrass transect (BNT), in a watershed of the Loess Plateau, China. Results showed that the temporal pattern of theta behaved similarly for the two land uses, with both relative wetter soils during wet period and relative drier soils during dry period recognized in BNT. Soil moisture tended to be temporally stable among different dates, and more stable patterns could be observed for dates with more similar soil water conditions. The magnitude of the spatial variation of theta in KPT was greater than that in ENT. For both land uses, the standard deviation (SD) of theta in general increased as theta(m) increased, a behavior that could be well described with a natural logarithmic function. Convex relationship of CV and theta(m) and the maximum CV for both land uses (43.5% in KPT and 41.0% in BNT) can, therefore, be ascertained. Geostatistical analysis showed that the range in KPT (9.1 m) was shorter than that in BNT (15.1 m). The nugget effects, the structured variability, hence the total variability increased as theta(m) increased. For both land uses, the spatial dependency in general increased with increasing theta(m). 2011 Elsevier B.V. All rights reserved.
Resumo:
Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C(4) grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m x 1 m, and 3 m x 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by similar to 4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r(2) = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r(2) =0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work analysed the influence of storage in the quality of forest biomass for energy generation in the region of Lages, Brazil. Logs of Pinus taeda L. and Eucalyptus dunnii Maiden were harvested and piled during the four different seasons: spring, summer, fall and winter. The analyses were performed immediately after harvesting (without being stored), after two, four and six months of storage. The evaluated properties were: moisture content, gross and net calorific value, ash content and solubility in cold water, hot water and sodium hydroxide. The species composition, storage span, harvesting season and storage season influenced the forest biomass characteristics. In general, eucalyptus presented better results than pine, losing moisture faster, having less alteration in the chemical composition and producing greater energetic gain over storage time. For both species, the ideal storage time was four months. Furthermore, spring and summer were the best harvesting seasons. Thus, if the forest biomass is harvested at the end of winter or beginning of spring with subsequent storage during the summer, this biomass will have the best performance for energy production. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three-and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined similar to 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 mu mol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by similar to 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 mu mol C mol N(-1) s(-1) at 20 degrees C).
Resumo:
Sugar and ethanol production are key components of Brazil`s rural development and energy strategies, yet in recent years sugar production has been widely criticized for its environmental and labor practices. This study examines the relationship between rural development and sugarcane, ethanol, and cattle production in the state of Sao Paulo. Our results suggest that the value added components of sugarcane production, which include sugar refining and ethanol production, may have a strong positive affect on local human development in comparison to primary agricultural production activities and other land uses. These results imply that sugar production, when accompanied by a local processing industry can stimulate rural development. However, this paper also highlights the significant environmental and social harms generated by the sugar industry at large, which may undermine its development benefits if not addressed. (C) 2011 Elsevier Ltd. All rights reserved.