893 resultados para conservation of genetic resources
Resumo:
Over the past decade the topic of genetic engineering has been has been readily debated in the media, but often these debates consist of political rhetoric and fail to offer objective information on the methods and the potential benefits to human health and their environment. In truth, humans have been manipulating the genomes of organisms for thousands of years, and it has been an evolution of scientific knowledge that has led to the more precise methods of genetic engineering. This paper discusses how scientists utilize natural processes to alter the genetic constituents of both prokaryotic and eukaryotic organisms, benefits to human health and the environment, as well as potential misuses of biotechnology such as bioterrorism.
Resumo:
Apolipoprotein E (ApoE) plays a major role in the metabolism of high density and low density lipoproteins (HDL and LDL). Its common protein isoforms (E2, E3, E4) are risk factors for coronary artery disease (CAD) and explain between 16 to 23% of the inter-individual variation in plasma apoE levels. Linkage analysis has been completed for plasma apoE levels in the GENOA study (Genetic Epidemiology Network of Atherosclerosis). After stratification of the population by lipoprotein levels and body mass index (BMI) to create more homogeneity with regard to biological context for apoE levels, Hispanic families showed significant linkage on chromosome 17q for two strata (LOD=2.93 at 104 cM for a low cholesterol group, LOD=3.04 at 111 cM for a low cholesterol, high HDLC group). Replication of 17q linkage was observed for apoB and apoE levels in the unstratified Hispanic and African-American populations, and for apoE levels in African-American families. Replication of this 17q linkage in different populations and strata provides strong support for the presence of gene(s) in this region with significant roles in the determination of inter-individual variation in plasma apoE levels. Through a positional and functional candidate gene approach, ten genes were identified in the 17q linked region, and 62 polymorphisms in these genes were genotyped in the GENOA families. Association analysis was performed with FBAT, GEE, and variance-component based tests followed by conditional linkage analysis. Association studies with partial coverage of TagSNPs in the gene coding for apolipoprotein H (APOH) were performed, and significant results were found for 2 SNPs (APOH_20951 and APOH_05407) in the Hispanic low cholesterol strata accounting for 3.49% of the inter-individual variation in plasma apoE levels. Among the other candidate genes, we identified a haplotype block in the ACE1 gene that contains two major haplotypes associated with apoE levels as well as total cholesterol, apoB and LDLC levels in the unstratified Hispanic population. Identifying genes responsible for the remaining 60% of inter-individual variation in plasma apoE level, will yield new insights into the understanding of genetic interactions involved in the lipid metabolism, and a more precise understanding of the risk factors leading to CAD. ^
Resumo:
In order to better take advantage of the abundant results from large-scale genomic association studies, investigators are turning to a genetic risk score (GRS) method in order to combine the information from common modest-effect risk alleles into an efficient risk assessment statistic. The statistical properties of these GRSs are poorly understood. As a first step toward a better understanding of GRSs, a systematic analysis of recent investigations using a GRS was undertaken. GRS studies were searched in the areas of coronary heart disease (CHD), cancer, and other common diseases using bibliographic databases and by hand-searching reference lists and journals. Twenty-one independent case-control studies, cohort studies, and simulation studies (12 in CHD, 9 in other diseases) were identified. The underlying statistical assumptions of the GRS using the experience of the Framingham risk score were investigated. Improvements in the construction of a GRS guided by the concept of composite indicators are discussed. The GRS will be a promising risk assessment tool to improve prediction and diagnosis of common diseases.^
Resumo:
Atherosclerosis is widely accepted as a complex genetic phenotype and is the usual cause of cardiovascular disease, the world’s leading killer. Genetic factors have been proven to be important risk contributors for atherosclerosis and much work has been done to identify promising candidates that might play a role in the development of atherosclerosis. It is well known that many independent replications are needed to unequivocally establish a valid genotype-phenotype association across different populations before the findings are extended to clinical settings and to the expensive follow-up studies designed to identify causal genetic variants. Aiming to replicate the association with atherosclerosis in the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, we assessed the relationship of 32 atherosclerosis candidate SNPs to atherosclerosis in the PDAY cohort, consisting of AA and EA young people aged 15-34 years who died of non-medical causes. Two association studies, a whole sample study and a 1:1 matched case control study were performed by use of multiple linear regression and logistic regression analyses, respectively. For the whole sample association study, 32 SNPs among 2,650 individuals (1,369 AA and 1,281 EA) were tested for the association with six early atherosclerosis phenotypes: abdominal aorta fatty streaks, abdominal aorta raised lesions, right coronary artery fatty streaks, right coronary artery raised lesions, thoracic aorta fatty streaks, and thoracic aorta raised lesions. For the matched case-control association study, 337 case-control paired samples were included; cases were chosen with the highest total raised lesion scores from the studied population, while controls were randomly selected from individuals that had no raised lesions and matched to cases by age, gender and race. Sixteen SNPs in 13 genes were found to be significantly associated with atherosclerosis in at least one of the PDAY association studies. Among these 16 findings: eight SNPs (rs9579646, rs6053733, rs3849150, rs10499903, rs2148079, rs5073691, rs10116277, and rs17228212) successfully replicated previous results, six SNPs (rs17222814, rs10811661, rs7028570, rs7291467, rs16996148 and rs10401969) were reported as new findings exclusive to our study, the last two of the 16 SNPs, rs501120 and rs6922269, showed either intriguing or conflicting result. SNP rs17222814 in ALOX5AP and SNP rs3849150 in LRRC18 were consistently associated with atherosclerosis in both prior and the two PDAY association studies. SNP rs3849150 was also identified to be highly correlated with a non-synonymous coding SNP, rs17772611, which may damage the protein (polyphen score = 0.996), suggesting that SNP rs17772611 may be the causal functional variant.^ In conclusion, our study added more support for the association of these candidate genes with atherosclerosis. SNPs rs3849150 and rs17772611 of LRRC18, as well as SNP rs17222814 of ALOX5AP, were the most significant findings from our study, and may be ranked among the best for further study.^
Resumo:
Pancreatic cancer is the 4th most common cause for cancer death in the United States, accompanied by less than 5% five-year survival rate based on current treatments, particularly because it is usually detected at a late stage. Identifying a high-risk population to launch an effective preventive strategy and intervention to control this highly lethal disease is desperately needed. The genetic etiology of pancreatic cancer has not been well profiled. We hypothesized that unidentified genetic variants by previous genome-wide association study (GWAS) for pancreatic cancer, due to stringent statistical threshold or missing interaction analysis, may be unveiled using alternative approaches. To achieve this aim, we explored genetic susceptibility to pancreatic cancer in terms of marginal associations of pathway and genes, as well as their interactions with risk factors. We conducted pathway- and gene-based analysis using GWAS data from 3141 pancreatic cancer patients and 3367 controls with European ancestry. Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Using the logistic kernel machine (LKM) test, we analyzed 17906 genes defined by University of California Santa Cruz (UCSC) database. Using the likelihood ratio test (LRT) in a logistic regression model, we analyzed 177 pathways and 17906 genes for interactions with risk factors in 2028 pancreatic cancer patients and 2109 controls with European ancestry. After adjusting for multiple comparisons, six pathways were marginally associated with risk of pancreatic cancer ( P < 0.00025): Fc epsilon RI signaling, maturity onset diabetes of the young, neuroactive ligand-receptor interaction, long-term depression (Ps < 0.0002), and the olfactory transduction and vascular smooth muscle contraction pathways (P = 0.0002; Nine genes were marginally associated with pancreatic cancer risk (P < 2.62 × 10−5), including five reported genes (ABO, HNF1A, CLPTM1L, SHH and MYC), as well as four novel genes (OR13C4, OR 13C3, KCNA6 and HNF4 G); three pathways significantly interacted with risk factors on modifying the risk of pancreatic cancer (P < 2.82 × 10−4): chemokine signaling pathway with obesity ( P < 1.43 × 10−4), calcium signaling pathway (P < 2.27 × 10−4) and MAPK signaling pathway with diabetes (P < 2.77 × 10−4). However, none of the 17906 genes tested for interactions survived the multiple comparisons corrections. In summary, our current GWAS study unveiled unidentified genetic susceptibility to pancreatic cancer using alternative methods. These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer, once confirmed, will shed promising light on the prevention and treatment of this disease. ^
Resumo:
Following posterior fossa surgery for resection of childhood medulloblastoma and primitive neuroectodermal tumor (M/PNET), cerebellar mutism (CM) may develop. This is a condition of absent or diminished speech in a conscious patient with no evidence of oral apraxia, which can be accompanied by other symptoms of the posterior fossa syndrome complex, which includes ataxia and hypotonia. Little is known about the etiology. Therefore, we conducted a SNP, gene, and pathway-level analysis to assess the role of host genetic variation on the risk of CM in M/PNET subjects following treatment. Cases (n= 20) and controls (n= 53) were recruited from the Childhood Cancer Epidemiology and Prevention Center, in Houston, TX. DNA samples were genotyped using the Illumina Human 1M Quad SNP chip. Ten pathways were identified from logistic regression used to identify the marginal effect of each SNP on CM risk. The minP test was conducted to identify associations between SNPs categorized to genes and CM risk. Pathways were assessed to determine if there was a significant enrichment of genes in the pathway compared to all other pathways. There were 78 genes that reached the threshold of min P ≤0.05 in 948 genes. The Neurotoxicity pathway was the most significant pathway after adjusting for multiple comparisons (q=0.040 and q=0.005, using Fisher's exact test and a test of proportions, respectively). Most genes within the Neurotoxicity pathway that reached a threshold of minP ≤0.05 were known to have an apoptosis function, possibly inducing neuronal apoptosis in the dentatothalamocortical pathway, and may be important in CM etiology in this population. This is the first study to assess the potential role of genetic risk factors on CM. As an exploratory study, these results should be replicated in a larger sample. ^
Resumo:
Hemophilia is a hereditary bleeding disorder which requires lifelong specialized care. A network of Hemophilia Treatment Centers (HTCs) exists to meet the medical needs of patients affected by hemophilia. Genetic counseling services are an integral part of the HTC model of care; however, many HTCs do not have genetic counselors on staff. As a result, the duty to provide these services must fall to other healthcare providers within the HTC. To assess the knowledge and attitudes of these providers we developed a 49 question survey that was distributed electronically to hematologists and nurses at U.S. HTCs. The survey consisted of a three sections: demographic information, knowledge of hemophilia genetics, and attitudes towards genetic services. A total of 111 complete responses were received and analyzed. The average knowledge score among all participants was 74.8% with a total of 81 participants receiving a passing score of 70% or above. Thirty participants scored below 70% in the knowledge section. In general, attitude scores were high indicating that the majority of hematologists and nurses in HTCs feel confident in their ability to provide genetic counseling services. Over 90% of participants reported that they have some form of access to genetic counseling services at their center. Hematologists and nurses practicing in U.S. HTCs demonstrate sufficient knowledge of the genetics of hemophilia, and they generally feel confident in their ability to provide genetic counseling services to their patients. While their knowledge is sufficient, the average knowledge score was lower than 75%. Certain questions covering new genetic technologies and testing practices were more commonly missed than questions asking about more basic aspects of hemophilia genetics, such as inheritance and carrier testing. Finally, many clinics report having access to a counselor, but it is oftentimes a hematologist or nurse who is providing genetic counseling services to patients. Given the inconsistency in knowledge among providers coupled with the high confidence in one’s ability to counsel patients, it leaves room to question whether information about the genetics of hemophilia is being communicated to patients in the most appropriate and accurate manner.
Resumo:
Li- Fraumeni Syndrome (LFS) is a rare autosomal dominant hereditary cancer syndrome caused by mutations in the TP53 gene that predisposes individuals to a wide variety of cancers, including breast cancer, soft tissue sarcomas, osteosarcomas, brain tumors, and adrenocortical carcinomas. Individuals found to carry germline mutations in TP53 have a 90% lifetime cancer risk, with a 20% chance to develop cancer under the age of 20. Despite the significant risk of childhood cancer, predictive testing for unaffected minors at risk for LFS historically has not been recommended, largely due to the lack of available and effective screening for the types of cancers involved. A recently developed screening protocol suggests an advantage to identifying and screening children at risk for LFS and we therefore hypothesized that this alongside with the availability of new screening modalities may substantiate a shift in recommendations for predictive genetic testing in minors at risk for LFS. We aimed to describe current screening recommendations that genetic counselors provide to this population as well as explore factors that may have influenced genetic counselors attitude and practice in regards to this issue. An online survey was emailed to members of the National Society of Genetic Counselors (NSGC) and the Canadian Association of Genetic Counsellors (CAGC). Of an estimated 1000 eligible participants, 172 completed surveys that were analyzed. Genetic counselors in this study were more likely to support predictive genetic testing for this population as the minor aged (p
Resumo:
The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.
Resumo:
La normalización de los métodos de análisis y de los principales aspectos relacionados con la conservación de los bienes culturales ha empezado en 2004 con la creación del comité europeo de normalización, CEN/TC 346 Conservation of Cultural Property, que tiene la responsabilidad no solamente de redactar protocolos de ensayos en laboratorio, sino también proponer las recomendaciones más adecuadas para designarlos de forma consensual y conservarlos de la forma más apropiada. Se comentan los aspectos relacionados con el origen de estas normas, el trabajo desarrollado y que muchas de ellas, aunque no estén dirigidas específicamente a la piedra, tienen en cuenta la presencia de este material en objetos arqueológicos, obras de arte, estructuras de fábricas y elementos ornamentales.