950 resultados para conical column
Resumo:
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, not least because they lack or misrepresent physical processes that are specific to high latitudes. The Arctic boundary layer in winter has been observed to be in either a radiatively clear or cloudy state: The radiatively clear state is characterized by strong surface radiative cooling leading to the build-up of surface-based temperature inversions, whereas the cloudy state occurs when cloud liquid water is present in the atmospheric column, allowing little or no surface radiative cooling and leading to weaker and typically elevated temperature inversions. Many large-scale models have been shown to lack the cloudy state, and some do substantially underestimate stability in the clear state. We here present results from the first Lagrangian ARCtic air FORMation experiment (Larcform 1), a GASS (Global atmospheric system studies) single-column model intercomparison which reproduces these biases of large-scale models in an idealised setup.
Resumo:
We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7), for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.