983 resultados para compressible planar mixing layer
Resumo:
To overcome the difficulty in the DNS of compressible turbulence at high turbulent Mach number, a new difference scheme called GVC8 is developed. We have succeeded in the direct numerical simulation of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus obtained at lower turbulent Mach number agree well with those from previous authors with the same initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-called start-up problem. The energy spectrum and coherent structure of compressible turbulent flow are analysed. The scaling law of compressible turbulence is studied. The computed results indicate that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of shocklets, and compressibility has little effects on relative scaling exponents when turbulent Mach number is not very high.
Resumo:
A theoretical investigation is performed on the thermocapillary motion of two bubbles in arbitrary configuration in microgravity environment under the assumption that the surface tension is high enough to keep the bubbles spherical. The two bubbles are dr
Resumo:
The oscillatory behaviour of the Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) regarding two combinations of two-layer fluid systems has been investigated theoretically and numerically. For the two-layer system of Silicone oil (10cSt) over Fluorinert (FC70), both linear instability analysis and 2D numerical simulation show that the instability of the system depends strongly on the depth ratio Hr = H1/H2 of the two-layer liquid. The oscillatory regime at the onset of R-M-B convection enlarges with reducing Γ = Ra/Ma values. In the two-layer system of Silicone oil (2cSt) over water, it loses its stability and onsets to steady convection at first, then the steady convection bifurcates to oscillatory convection with increasing Rayleigh number Ra. This behaviour was found through numerical simulation above the onset of steady convection in the case of r = 2.9, ε=(Ra-Ruc)/Rac = 1.0, and Hr = 0.5. Our findings are different from the previous study of the Rayleigh-Benard instability and show the strong effects of the thermocapillary force at the interface on the time-dependent oscillations at or after the onset of convection. We propose a secondary oscillatory instability mechanism to explain the experimental observation of Degen et al. [Phys. Rev. E, 57 (1998), 6647-6659].
Resumo:
The oscillatory thermocapillary convection and hydrothermal wave in a shallow liquid layer, where a temperature difference is applied between two parallel sidewalls, have been numerically investigated in a two-dimensional model. The oscillatory thermocapillary convection and hydrothermal wave appear if the Marangoni number is larger than a critical value. The critical phase speed and critical wave number of the hydrothermal wave agree with the ones given analytically by Smith and Davis in the microgravity environment, and it travels in the direction opposed to the surface flow. Another wave traveled downstream in addition to the hydrothermal wave traveled upstream was observed in the case of earth gravity condition.