1000 resultados para complexes métalliques
Resumo:
Several specific non-covalent protein complexes were successfully observed by matrix assisted desorption ionization mass spectrometry(MALDI MS). The methods described in this paper include the matrixes use of sinapinic acid(SA) and 6-aza-2-thiothymine (ATT) in neutral pH solution, as well as the improvement of two-layer sample preparation method to achieve a high sensitivity detection of stable non-covalent complexes, Myoglobin-heme complex was found simultaneously with the sinapinic acid matrix in the various pH solution(pH=2 or pH=5), The RNase S complex showed a striking intensity at the first shot, which was decreased with more laser shots. Most importantly, the observation of specific non-covalent complex in the brome mosaic virus(BMV) coat proteins would open up a new possibility to investigate the assembly and disassembly of viral capsids.
Resumo:
The present work revealed that the praseodymium( II ) complex of 2-carboxyethylgermanium sesquioxide (Ge-132) promotes the hydrolysis of the phosphodiester linkages of 3',5'-cyclic adenosine monophosphate (cAMP), 3' , 5'-cyclic deoxyadenosine monophosphate (dcAMP), 5'-adenosine monophosphate(5'-AMP) and 5'-deoxyadenosine monophosphate (5'-dAMP) under mild conditions. Both cAMP and dcAMP were hydrolyzed site-specifically, yielding predominantly 3'-monophosphates, the main products of the cleavage of 5'-AMP and 5'-dAMP included adenosine (Ado). deoxyadenosine (dAdo) and free phosphates respectively. A hydrolytic mechanism was proposed for cAMP, dcAMP, 5'-AMP and 5'-dAMP.
Resumo:
Two new metal-ore supported transition metal complexes, E{M(phen)(2)}(2)(Mo8O26) (M = Ni or CO; phen = 1,10-phenanthroline) are synthesized by a hydrothermal method and characterized by X-ray crystallography, showing that the octamolybdate possesses a novel unprecedented structure and that [M(phen)(2)](2+) units are covalently bonded to the [Mo8O26](4-) cluster.
Resumo:
Half-sandwich nitrosyl complexes Cp*M(NO)I-2 (M = Mo, or W) react with dithiocarbamates (NaS2CNMe2 and NaS2CNEt2) in THF to form of complexes: Cp*Mo(NO)I (S2CNMe2) (1), Cp*Mo(NO)I(S2CNEt2) (2), Cp*W(NO)I(S2CNMe2) (3) and Cp*W(NO)I(S2CNEt2) (4) in high yields. Treatments of Cp*M(NO)I-2 (M = Mo, W) or [CpMo(NO)I-2](2) with phosphinodithioate (NaS2PMe2) and phosphorodithioate [(NH4)S2P(OMe)(2)] result in complexes: Cp*Mo(NO)I(S2PMe2) (5a), CpMo(NO)I (S2PMe2) (5b), Cp*Mo(NO)(S2PMe2)(2) (6a), CpMo (NO) (S2PMe2)(2) (6b) and Cp*Mo(NO)I[S2P(OMe)(2)] (7), Cp*W(NO)I(S2PMe2) (8), Cp*W(NO) I[S2P(OMe)](2) (9). Treatment of (5a) and (5b) with an excess of NaS2PMe2 gives (6a) and (6b). The complexes have been characterized by their elemental analyses, i.r., H-1, C-13-n.m.r. and by EI-MS spectrometry.
Resumo:
Four novel polymeric lanthanide(III) complexes of two new double betaine derivatives have been synthesized and structurally determined. In [{La-2(L-1)(2)(H2O)(9)}(n)]Cl-6n. 2nH(2)O (1) and [{Tb(L-1)(H2O)(4)}(n)]Cl-3n. nH(2)O (2) (L-1 =4,4'-trimethylenedipyridinio-N,N'-diacetate), the lanthanide(III) ions form a two-dimensional layer in which each pair of lanthanide(III) ions is bridged by two syn-anti mu-carboxylato-O,O' groups. Adjacent layers are cross-linked through hydrogen bonds among aqua ligands, lattice water molecules and chloride ions, to form a three-dimensional network. Isomorphous [{Ln(L-1)(H2O)(4)}(n)]Cl-3n. 5nH(2)O (Ln=La, 3; Ln=Tb, 4; L-2=1,3 bis(pyridinio-4-carboxylato)-propane) each contain a centrosymmetric paddle-wheel-like dimeric unit in which each pair of adjacent metal atoms is bridged by four syn-syn mu-carboxylato-O,O' groups that are oriented nearly perpendicular to each other about the metal-metal axis. Neighboring dimeric subunits are bridged by a pair of flexible LL ligands into a polymeric chain. Adjacent chains are inter-linked by hydrogen bonds among aqua ligands, lattice water molecules and chloride ions into a three-dimensional network. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The reaction of [Cp*IrCl2](2) with dilithium 1,2-orthocarborane-1,2-diselenolate 3 leads to the green 16-electron diselenolene complex [Cp*Ir{Se2C2(B10H10)}] (4) which takes up two-electron ligands such as trimethylphosphane to give the 18-electron diselenolate derivative [Cp*Ir(PMe3)-{Se2C2(B10H10)}] (5). The molecular structures of 4 and 5 were determined by X-ray crystal structure analysis. The Se-77-nuclear shielding in 4 is lower by almost 500 ppm relative to that in 5.
Resumo:
Synthesis, IR spectra, UV-vis spectra and photophysical properties of Gd3+, Eu3+, Tb3+ complexes with 3,4-furandicarboxylic acid and 1,10-phenanthroline are reported. Intramolecular energy transfer process for these complexes is discussed in detail. It is found that the intramolecular energy transfer efficiency depends on the relative positions between the resonance energy levels of the central rare earth ions and the lowest triplet state energies of ligands.
Resumo:
In-situ synthesis of europium and terbium complexes with 1,10-phenanthroline (phen) in silica matrix by a two-step sol-gel process has been proposed. The formation of europium and terbium complexes with phen in sol-gel derived silica gel were confirmed by the luminescence excitation spectra. The silica gels that contain in-situ synthesized europium and terbium complex exhibit the characteristic emission bands of the rare earth ions. Furthermore. the rare earth ions present longer fluorescence lifetimes than the comparable pure complex powder and the complexes dissolved in ethanol solutions. The luminescence properties of the silica gels codoped with europium (or terbium) and phen were also investigated with respect to the gels doped with europium (or terbium). (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
It is reported that two kinds of specific mass spectrometric fragmentations are generated from dissociations of the intermediates of both the ion-neutral complex and the proton-bound complex. Collision-induced dissociation, isotopic labelling, and semi-empirical AM1 calculations were used to investigate the formation mechanism of the ion of m/z 139 from ionized tetrahydroimidazole-substituted methylene beta-diketones and the unimolecular fragmentations pathway of 3-phenyl-1-butyn-3-ol upon electron impact.
Resumo:
Stability and luminescence properties of Tb (III) complexes with adrenaline have been studied. The Tb (III) complexes with adrenaline are quite stable. The fluorescence spectra of the Tb (III) complexes with adrenaline show the characteristic fluorescence bands of Tb (III) ions which are attributed to energy transfer from ligands to Tb (III) ions.
Resumo:
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry is difficult for the characterization of noncovalent complexes hitherto because of the limitations in acidic matrix, sample preparation, laser-induced polymerization and adduct formation with matrix. Under our experimental conditions, sinapinic acid is used as a matrix, the specific noncovalent interactions of protein with fullerenols were observed by MALDI mass spectrometry. Some mass spectrometric features, such as mass shifts, broad adduct peaks and stoichiometries, showed that the specific non-covalent complexes between protein and fullerenols have been formed at a ratio of 1 : 4 for hemoglobin-fullerenols or 1 : 1 for myoglobin-fullerenols. The results implied that fullereneols could be used to protect partly hemoglobin from decomposition in acidic media, and therefore, it is possible to realize the molecular weight determination of a quaternary protein by MALDI mass spectrometry via the addition of specific organic compound in the matrix.
Resumo:
The complexes of a series of rare earths with Ge-132 have been prepared. The carboxyl anions of Ge-132 molecule were coordinated to rare earth ion with chelate style. In the complexes molecule, the GeO3/2 group of Ge-132 were hydrolyzed to become -Ge(OH)(3) group, and later does:not coordinate with rare earth ions. All of the complexes possess similar properties. In aqueous solution of pH 6 and 50 degrees C, these complexes can obviously selectively catalytically hydrolize the phosphatide bond of 5'-AMP and 5'-dAMP into phosphatic acid and riboside.
Synthesis, characterisation and catalytic activity of propionamide complexes of rare earth chlorides
Resumo:
Propionamide complexes of rare earth chlorides were synthesized, Formula of the complexes is LnCl(3). 3BA. The ligand is shown to behave as a normal amide donor With the oxygen of the carbonyl group coordinated to the metal ions. Binary system composed Elf propionamide and aluminum alkyl shows higher activity and stereospecificity for butadiene polymerization. The cis-1,4 content of polybutadiene is more than 98%.
Resumo:
1:1 complexes of beta-cyclodextrin (CD) with three amino acids (Gly, Phe and Trp) have been detected as ions in the gas phase using infusion positive and negative ion electrospray ionization mass spectrometry (ESI-MS). In contrast with the positive ion ESI mass spectra of simple aqueous solutions, the aggregates and adducts usually formed in the ESI process did not appear in the positive ion ESI spectra of solutions buffered with ammonium acetate (NH4Ac), even at higher analyte concentrations, These studies suggest that addition of buffer and/or use of a low analyte concentration should be used to overcome formation of aggregates and metal ion adducts in such mass spectrometry studies. Also, the deprotonated complexes are dissociated by collision induced dissociation (CID) to form an abundant product ion, the deprotonated CD, requiring transfer of a proton to the amino acid carboxyl group, To understand formation of complexes in the gas phase, gel permeation chromatography (GPC) was used to separate free amino acids (AAs) from complexes in an incubated solution. The ESI mass spectra of the GPC fractions show the presence of 1:1 complexes of both CD-aromatic amino acids and CD-aliphatic amino acids. Compared with CD-aliphatic amino acid complexes, CD-aromatic amino acid complexes appear to be destabilized in the gas phase, possibly because the hydrophobic interaction which binds the aromatic group of amino acids in the CD cavity in solution may become repulsive when solvent evaporates from the droplets during the electrospray process, whereas those complex ions formed as proton bound dimers are stabilized by electrostatic forces, the major binding force for such complexes in the gas phase. In addition, the GPC technique coupled with off-line ESI-MS can rapidly separate CD complexes by size, and provides some information on the character of the complexes in solution. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied. (C) 1998 Elsevier Science Ltd. All rights reserved.