960 resultados para commodity spot


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Issued Apr. 1976.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes data for cotton, frozen concentrated orange juice, potatoes, wool, and imported frozen fresh boneless beef.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description based on: 1986; title from caption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo album title: Detroit to San Francisco over Lincoln Highway. May 27-June 18, 1915. Henry B. Joy; A.F. Bement; E. Eisenhut

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2 scans made - 1of1 includes caption pasted below, 2of2 = image only

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2 scans made - 1of1 includes caption pasted below, 2of2 = image only

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-copy restriction fragment length polymorphism (RFLP) markers were used to determine the genetic structure of the global population of Mycosphaerella musicola, the cause of Sigatoka (yellow Sigatoka) disease of banana. The isolates of M. musicola examined were grouped into four geographic populations representing Africa, Latin America and the Caribbean, Australia and Indonesia. Moderate levels of genetic diversity were observed for most of the populations (H = 0.22-0.44). The greatest genetic diversity was found in the Indonesian population (H = 0.44). Genotypic diversity was close to 50% in all populations. Population differentiation tests showed that the geographic populations of Africa, Latin America and the Caribbean, Australia and Indonesia were genetically different populations. Using F-ST tests, very high levels of genetic differentiation were detected between all the population pairs (F-ST > 0.40), with the exception of the Africa and Latin America-Caribbean population pair. These two populations differed by only 3% (F-ST = 0.03), and were significantly different (P < 0.05) from all other population pairs. The high level of genetic diversity detected in Indonesia in comparison to the other populations provides some support for the theory that M. musicola originated in South-east Asia and that M. musicola populations in other regions were founded by isolates from the South-east Asian region. The results also suggest the migration of M. musicola between Africa and the Latin America-Caribbean region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White spot syndrome virus ( WSSV) is a serious pathogen of aquatic crustaceans. Little is known about its transmission in vivo and the immune reaction of its hosts. In this study, the circulating haemocytes of crayfish, Procambarus clarkii, infected by WSSV, and primary haemocyte cultures inoculated with WSSV, were collected and observed by transmission electron microscopy and light microscopy following in situ hybridization. In ultrathin sections of infected haemocytes, the enveloped virions were seen to be phagocytosed in the cytoplasm and no viral particles were observed in the nuclei. In situ hybridization with WSSV-specific probes also demonstrated that there were no specific positive signals present in the haemocytes. Conversely, strong specific positive signals showed that WSSV replicated in the nuclei of gill cells. As a control, the lymphoid organ of shrimp, Penaeus monodon, infected by WSSV was examined by in situ hybridization which showed that WSSV did not replicate within the tubules of the lymphoid organ. In contrast to previous studies, it is concluded that neither shrimp nor crayfish haemocytes support WSSV replication.White spot syndrome virus (WSSV) is a serious pathogen of aquatic crustaceans. Little is known about its transmission in vivo and the immune reaction of its hosts. In this study, the circulating haemocytes of crayfish, Procambarus clarkii, infected by WSSV, and primary haemocyte cultures inoculated with WSSV, were collected and observed by transmission electron microscopy and light microscopy following in situ hybridization. In ultra-thin sections of infected haemocytes, the enveloped virions were seen to be phagocytosed in the cytoplasm and no viral particles were observed in the nuclei. In situ hybridization with WSSV-specific probes also demonstrated that there were no specific positive signals present in the haemocytes. Conversely, strong specific positive signals showed that WSSV replicated in the nuclei of gill cells. As a control, the lymphoid organ of shrimp, Penaeus monodon, infected by WSSV was examined by in situ hybridization which showed that WSSV did not replicate within the tubules of the lymphoid organ. In contrast to previous studies, it is concluded that neither shrimp nor crayfish haemocytes support WSSV replication.