920 resultados para cognitive task analysis
Resumo:
We tested the assumption that persistent performance in an exhausting indoor cycling task would depend on momentarily available self-control strength (N = 20 active participants). In a within-subjects design (two points of measurement, exactly seven days apart), participants’ self-control strength was experimentally manipulated (depletion: yes vs. no; order counterbalanced) via the Stroop test before the participants performed a cycling task. In line with our hypothesis, hierarchical linear modelling (HLM) revealed that participants consistently performed worse over a period of 18 minutes when they were ego depleted. In addition, HLM analysis revealed that depleted participants invested less effort in the cycling task, as indicated by their lower heart rate. This effect escalated over time, as indicated by a time × condition interaction. These results indicate that self-control strength is necessary to obtain an optimal level of performance in endurance tasks requiring high levels of persistence. Practical implications are discussed.
Resumo:
Abstract Previous work highlighted the possibility that musical training has an influence on cognitive functioning. The suggested reason for this influence is the strong recruitment of attention, planning, and working memory functions during playing a musical instrument. The purpose of the present work was twofold, namely to evaluate the general relationship between pre-stimulus electrophysiological activity and cognition, and more specifically the influence of musical expertise on working memory functions. With this purpose in mind, we used covariance mapping analyses to evaluate whether pre-stimulus electroencephalographic activity is predictive for reaction time during a visual working memory task (Sternberg paradigm) in musicians and non-musicians. In line with our hypothesis, we replicated previous findings pointing to a general predictive value of pre-stimulus activity for working memory performance. Most importantly, we also provide first evidence for an influence of musical expertise on working memory performance that could distinctively be predicted by pre-stimulus spectral power. Our results open novel perspectives for better comprehending the vast influences of musical expertise on cognition.
Resumo:
A main assumption of social production function theory is that status is a major determinant of subjective well-being (SWB). From the perspective of the dissociative hypothesis, however, upward social mobility may be linked to identity problems, distress, and reduced levels of SWB because upwardly mobile people lose their ties to their class of origin. In this paper, we examine whether or not one of these arguments holds. We employ the United Kingdom and Switzerland as case studies because both are linked to distinct notions regarding social inequality and upward mobility. Longitudinal multilevel analyses based on panel data (UK: BHPS, Switzerland: SHP) allow us to reconstruct individual trajectories of life satisfaction (as a cognitive component of SWB) along with events of intragenerational and intergenerational upward mobility—taking into account previous levels of life satisfaction, dynamic class membership, and well-studied determinants of SWB. Our results show some evidence for effects of social class and social mobility on well-being in the UK sample, while there are no such effects in the Swiss sample. The UK findings support the idea of dissociative effects in terms of a negative effect of intergenerational upward mobility on SWB.
Resumo:
Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.
Resumo:
The momentary, global functional state of the brain is reflected by its electric field configuration. Cluster analytical approaches consistently extracted four head-surface brain electric field configurations that optimally explain the variance of their changes across time in spontaneous EEG recordings. These four configurations are referred to as EEG microstate classes A, B, C, and D and have been associated with verbal/phonological, visual, attention reorientation, and subjective interoceptive-autonomic processing, respectively. The present study tested these associations via an intra-individual and inter-individual analysis approach. The intra-individual approach tested the effect of task-induced increased modality-specific processing on EEG microstate parameters. The inter-individual approach tested the effect of personal modality-specific parameters on EEG microstate parameters. We obtained multichannel EEG from 61 healthy, right-handed, male students during four eyes-closed conditions: object-visualization, spatial-visualization, verbalization (6 runs each), and resting (7 runs). After each run, we assessed participants' degrees of object-visual, spatial-visual, and verbal thinking using subjective reports. Before and after the recording, we assessed modality-specific cognitive abilities and styles using nine cognitive tests and two questionnaires. The EEG of all participants, conditions, and runs was clustered into four classes of EEG microstates (A, B, C, and D). RMANOVAs, ANOVAs and post-hoc paired t-tests compared microstate parameters between conditions. TANOVAs compared microstate class topographies between conditions. Differences were localized using eLORETA. Pearson correlations assessed interrelationships between personal modality-specific parameters and EEG microstate parameters during no-task resting. As hypothesized, verbal as opposed to visual conditions consistently affected the duration, occurrence, and coverage of microstate classes A and B. Contrary to associations suggested by previous reports, parameters were increased for class A during visualization, and class B during verbalization. In line with previous reports, microstate D parameters were increased during no-task resting compared to the three internal, goal-directed tasks. Topographic differences between conditions concerned particular sub-regions of components of the metabolic default mode network. Modality-specific personal parameters did not consistently correlate with microstate parameters except verbal cognitive style which correlated negatively with microstate class A duration and positively with class C occurrence. This is the first study that aimed to induce EEG microstate class parameter changes based on their hypothesized functional significance. Beyond, the associations of microstate classes A and B with visual and verbal processing, respectively and microstate class D with interoceptive-autonomic processing, our results suggest that a finely-tuned interplay between all four EEG microstate classes is necessary for the continuous formation of visual and verbal thoughts, as well as interoceptive-autonomic processing. Our results point to the possibility that the EEG microstate classes may represent the head-surface measured activity of intra-cortical sources primarily exhibiting inhibitory functions. However, additional studies are needed to verify and elaborate on this hypothesis.
Resumo:
The evaluation for European Union market approval of coronary stents falls under the Medical Device Directive that was adopted in 1993. Specific requirements for the assessment of coronary stents are laid out in supplementary advisory documents. In response to a call by the European Commission to make recommendations for a revision of the advisory document on the evaluation of coronary stents (Appendix 1 of MEDDEV 2.7.1), the European Society of Cardiology (ESC) and the European Association of Percutaneous Cardiovascular Interventions (EAPCI) established a Task Force to develop an expert advisory report. As basis for its report, the ESC-EAPCI Task Force reviewed existing processes, established a comprehensive list of all coronary drug-eluting stents that have received a CE mark to date, and undertook a systematic review of the literature of all published randomized clinical trials evaluating clinical and angiographic outcomes of coronary artery stents between 2002 and 2013. Based on these data, the TF provided recommendations to inform a new regulatory process for coronary stents. The main recommendations of the task force include implementation of a standardized non-clinical assessment of stents and a novel clinical evaluation pathway for market approval. The two-stage clinical evaluation plan includes recommendation for an initial pre-market trial with objective performance criteria (OPC) benchmarking using invasive imaging follow-up leading to conditional CE-mark approval and a subsequent mandatory, large-scale randomized trial with clinical endpoint evaluation leading to unconditional CE-mark. The data analysis from the systematic review of the Task Force may provide a basis for determination of OPC for use in future studies. This paper represents an executive summary of the Task Force's report.
Resumo:
The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.
Resumo:
Optimal adjustment of brain networks allows the biased processing of information in response to the demand of environments and is therefore prerequisite for adaptive behaviour. It is widely shown that a biased state of networks is associated with a particular cognitive process. However, those associations were identified by backward categorization of trials and cannot provide a causal association with cognitive processes. This problem still remains a big obstacle to advance the state of our field in particular human cognitive neuroscience. In my talk, I will present two approaches to address the causal relationships between brain network interactions and behaviour. Firstly, we combined connectivity analysis of fMRI data and a machine leaning method to predict inter-individual differences of behaviour and responsiveness to environmental demands. The connectivity-based classification approach outperforms local activation-based classification analysis, suggesting that interactions in brain networks carry information of instantaneous cognitive processes. Secondly, we have recently established a brand new method combining transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and EEG. We use the method to measure signal transmission between brain areas while introducing extrinsic oscillatory brain activity and to study causal association between oscillatory activity and behaviour. We show that phase-matched oscillatory activity creates the phase-dependent modulation of signal transmission between brain areas, while phase-shifted oscillatory activity blunts the phase-dependent modulation. The results suggest that phase coherence between brain areas plays a cardinal role in signal transmission in the brain networks. In sum, I argue that causal approaches will provide more concreate backbones to cognitive neuroscience.
Resumo:
BACKGROUND: Crossing a street can be a very difficult task for older pedestrians. With increased age and potential cognitive decline, older people take the decision to cross a street primarily based on vehicles' distance, and not on their speed. Furthermore, older pedestrians tend to overestimate their own walking speed, and could not adapt it according to the traffic conditions. Pedestrians' behavior is often tested using virtual reality. Virtual reality presents the advantage of being safe, cost-effective, and allows using standardized test conditions. METHODS: This paper describes an observational study with older and younger adults. Street crossing behavior was investigated in 18 healthy, younger and 18 older subjects by using a virtual reality setting. The aim of the study was to measure behavioral data (such as eye and head movements) and to assess how the two age groups differ in terms of number of safe street crossings, virtual crashes, and missed street crossing opportunities. Street crossing behavior, eye and head movements, in older and younger subjects, were compared with non-parametric tests. RESULTS: The results showed that younger pedestrians behaved in a more secure manner while crossing a street, as compared to older people. The eye and head movements analysis revealed that older people looked more at the ground and less at the other side of the street to cross. CONCLUSIONS: The less secure behavior in street crossing found in older pedestrians could be explained by their reduced cognitive and visual abilities, which, in turn, resulted in difficulties in the decision-making process, especially under time pressure. Decisions to cross a street are based on the distance of the oncoming cars, rather than their speed, for both groups. Older pedestrians look more at their feet, probably because of their need of more time to plan precise stepping movement and, in turn, pay less attention to the traffic. This might help to set up guidelines for improving senior pedestrians' safety, in terms of speed limits, road design, and mixed physical-cognitive trainings.
Resumo:
Background: Since the cognitive revolution of the early 1950s, cognitions have been discussed as central components in the understanding and treatment of mental illnesses. Even though there is an extensive literature on the association between therapy-related cognitions such as irrational beliefs and psychological distress over the past 60 years, there is little meta-analytical knowledge about the nature of this association. Methods: The relationship between irrational beliefs and distress was examined based on a systematic review that included 100 independent samples, gathered in 83 primary studies, using a random-effect model. The overall effects as well as potential moderators were examined: (a) distress measure, (b) irrational belief measure, (c) irrational belief type, (d) method of assessment of distress, (e) nature of irrational beliefs, (f) time lag between irrational beliefs and distress assessment, (g) nature of stressful events, (h) sample characteristics (i.e. age, gender, income, and educational, marital, occupational and clinical status), (i) developer/validator status of the author(s), and (k) publication year and country. Results: Overall, irrational beliefs were positively associated with various types of distress, such as general distress, anxiety, depression, anger, and guilt (omnibus: r = 0.38). The following variables were significant moderators of the relationship between the intensity of irrational beliefs and the level of distress: irrational belief measure and type, stressful event, age, educational and clinical status, and developer/validator status of the author. Conclusions: Irrational beliefs and distress are moderately connected to each other; this relationship remains significant even after controlling for several potential covariates.
Resumo:
Computer games for a serious purpose - so called serious games can provide additional information for the screening and diagnosis of cognitive impairment. Moreover, they have the advantage of being an ecological tool by involving daily living tasks. However, there is a need for better comprehensive designs regarding the acceptance of this technology, as the target population is older adults that are not used to interact with novel technologies. Moreover given the complexity of the diagnosis and the need for precise assessment, an evaluation of the best approach to analyze the performance data is required. The present study examines the usability of a new screening tool and proposes several new outlines for data analysis.
Resumo:
Gebiet: Chirurgie Abstract: Minimized Extracorporeal Circulation does not impair cognitive brain function after coronary artery bypass grafting – – Objectives – Objective evaluation of the impact of minimized extracorporeal circulation (MECC) on perioperative cognitive brain function in coronary bypass grafting (CABG) by Electroencephalogram (EEG) P 300 wave event related potentials (ERP) and number connection test ( NCT) as metrics of cognitive function. – – Methods – Cognitive brain function was assessed in 31 patients with a mean age of 65y (Standard Deviation/SD 10) undergoing coronary artery bypass grafting (CABG) by the use of MECC with P300 auditory evoked potentials (peak latencies in milliseconds [ms]) directly prior to intervention, 7 days after and 3 month later. Number connection test (NCT), serving as method of control, was performed simultaneously in all patients. – – Results – Seven days following CABG, cognitive P300 evoked potentials were comparable to preoperative baseline values (vertex [Cz] 376 (SD 11) ms vs. 378 (18) ms, p=0.39, frontal [Fz] 377 (11) vs. 379 (21) ms, p=0.53). Cognitive brain function showed at 3 months compared to baseline values ([Cz] 376 (11) ms vs. 371 (14 ms) p=0.09, [Fz] 377 (11) ms vs. 371 (15) ms, p=0.04. Between the first postoperative measurement and 3 months later, significant improvement was observed ([Cz] 378 (18) ms vs. 371 (14) ms, p=0.03, [Fz] 379 (21) vs. 371 (15) ms, p=0.02). Similar clearly corresponding patterns could be obtained via number connection test. Results could be confirmed in repeated measures analysis of variance for Cz (p = 0.05) and (Fz) results (p = 0.04). – – Conclusions
Resumo:
Schizophrenia patients show abnormalities in a broad range of task demands. Therefore, an explanation common to all these abnormalities has to be sought independently of any particular task, ideally in the brain dynamics before a task takes place or during resting state. For the neurobiological investigation of such baseline states, EEG microstate analysis is particularly well suited, because it identifies subsecond global states of stable connectivity patterns directly related to the recruitment of different types of information processing modes (e.g., integration of top-down and bottom-up information). Meanwhile, there is an accumulation of evidence that particular microstate networks are selectively affected in schizophrenia. To obtain an overall estimate of the effect size of these microstate abnormalities, we present a systematic meta-analysis over all studies available to date relating EEG microstates to schizophrenia. Results showed medium size effects for two classes of microstates, namely, a class labeled C that was found to be more frequent in schizophrenia and a class labeled D that was found to be shortened. These abnormalities may correspond to core symptoms of schizophrenia, e.g., insufficient reality testing and self-monitoring as during auditory verbal hallucinations. As interventional studies have shown that these microstate features may be systematically affected using antipsychotic drugs or neurofeedback interventions, these findings may help introducing novel diagnostic and treatment options.
Resumo:
PURPOSE To assess possible effects of working memory (WM) training on cognitive functionality, functional MRI and brain connectivity in patients with juvenile MS. METHODS Cognitive status, fMRI and inter-network connectivity were assessed in 5 cases with juvenile MS aged between 12 and 18 years. Afterwards they received a computerized WM training for four weeks. Primary cognitive outcome measures were WM (visual and verbal) and alertness. Activation patterns related to WM were assessed during fMRI using an N-Back task with increasing difficulty. Inter-network connectivity analyses were focused on fronto-parietal (left and right), default-mode (dorsal and ventral) and the anterior salience network. Cognitive functioning, fMRI and inter-network connectivity were reassessed directly after the training and again nine months following training. RESULTS Response to treatment was seen in two patients. These patients showed increased performance in WM and alertness after the training. These behavioural changes were accompanied by increased WM network activation and systematic changes in inter-network connectivity. The remaining participants were non-responders to treatment. Effects on cognitive performance were maintained up to nine months after training, whereas effects observed by fMRI disappeared. CONCLUSIONS Responders revealed training effects on all applied outcome measures. Disease activity and general intelligence may be factors associated with response to treatment.
Resumo:
The attentional blink (AB) is a fundamental limitation of the ability to select relevant information from irrelevant information. It can be observed with the detection rate in an AB task as well as with the corresponding P300 amplitude of the event-related potential. In previous research, however, correlations between these two levels of observation were weak and rather inconsistent. A possible explanation of this finding might be that multiple processes underlie the AB and, thus, obscure a possible relationship between AB-related detection rate and the corresponding P300 amplitude. The present study investigated this assumption by applying a fixed-links modeling approach to represent behavioral individual differences in the AB as a latent variable. Concurrently, this approach enabled us to control for additional sources of variance in AB performance by deriving two additional latent variables. The correlation between the latent variable reflecting behavioral individual differences in AB magnitude and a corresponding latent variable derived from the P300 amplitude was high (r=.70). Furthermore, this correlation was considerably stronger than the correlations of other behavioral measures of the AB magnitude with their psychophysiological counterparts (all rs<.40). Our findings clearly indicate that the systematic disentangling of various sources of variance by utilizing the fixed-links modeling approach is a promising tool to investigate behavioral individual differences in the AB and possible psychophysiological correlates of these individual differences.