963 resultados para class of 2017
Resumo:
2000 Mathematics Subject Classification: 35J40, 49J52, 49J40, 46E30
Resumo:
Донка Пашкулева - Предмет на тази статия е получаването на точни оценки за коефициентите и ръста на функциите за някои класове еднолистни функции с отрицателни коефициенти.
Resumo:
Недю Попиванов, Цветан Христов - Изследвани са някои тримерни аналози на задачата на Дарбу в равнината. През 1952 М. Протер формулира нови тримерни гранични задачи както за клас слабо хиперболични уравнения, така и за някои хиперболично-елиптични уравнения. За разлика от коректността на двумерната задача на Дарбу, новите задачи са некоректни. За слабо хиперболични уравнения, съдържащи младши членове, ние намираме достатъчни условия както за съществуване и единственост на обобщени решения с изолирана степенна особеност, така и за единственост на квази-регулярни решения на задачата на Протер.
Resumo:
Недю Иванов Попиванов, Алексей Йорданов Николов - През 1952 г. М. Протър формулира нови гранични задачи за вълновото уравнение, които са тримерни аналози на задачите на Дарбу в равнината. Задачите са разгледани в тримерна област, ограничена от две характеристични конуса и равнина. Сега, след като са минали повече от 50 години, е добре известно, че за безброй гладки функции в дясната страна на уравнението тези задачи нямат класически решения, а обобщеното решение има силна степенна особеност във върха на характеристичния конус, която е изолирана и не се разпространява по конуса. Тук ние разглеждаме трета гранична задача за вълновото уравнение с младши членове и дясна страна във формата на тригонометричен полином. Дадена е по-нова от досега известната априорна оценка за максимално възможната особеност на решенията на тази задача. Оказва се, че при по-общото уравнение с младши членове възможната сингулярност е от същия ред като при чисто вълновото уравнение.
Resumo:
AMS subject classification: 90C29.
Resumo:
2000 Mathematics Subject Classification: 60J80
Resumo:
2000 Mathematics Subject Classification: 62H15, 62P10.
Resumo:
2000 Mathematics Subject Classification: 60K15, 60K20, 60G20,60J75, 60J80, 60J85, 60-08, 90B15.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62M05
Resumo:
2000 Mathematics Subject Classification: 60J80, 60J85
Resumo:
2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.
Resumo:
MSC 2010: 42A32; 42A20
Resumo:
AMS classification: 41A36, 41A10, 41A25, 41Al7.
Resumo:
2000 Mathematics Subject Classification: 37D40.