957 resultados para citric pulp
Resumo:
In 1998 the first decorticator was developed in the Textile Engineering Laboratory and patented for the purpose of extracting fibres from pineapple leaves, with the financial help from CNPq and BNB. The objective of the present work was to develop an automatic decorticator different from the first one with a semiautomatic system of decortication with automatic feeding of the leaves and collection of the extracted fibres. The system is started through a command system that passes information to two engines, one for starting the beater cylinder and the other for the feeding of the leaves as well as the extraction of the decorticated fibres automatically. This in turn introduces the leaves between a knife and a beater cylinder with twenty blades (the previous one had only 8 blades). These blades are supported by equidistant flanges with a central transmission axis that would help in increasing the number of beatings of the leaves. In the present system the operator has to place the leaves on the rotating endless feeding belt and collect the extracted leaves that are being carried out through another endless belt. The pulp resulted form the extraction is collected in a tray through a collector. The feeding of the leaves as well as the extraction of the fibres is controlled automatically by varying the velocity of the cylinders. The semi-automatic decorticator basically composed of a chassis made out of iron bars (profile L) with 200cm length, 91 cm of height 68 cm of width. The decorticator weighs around 300Kg. It was observed that the increase in the number of blades from 8 to twenty in the beater cylinder reduced the turbulence inside the decorticator, which helped to improve the removal of the fibres without any problems as well as the quality of the fibres. From the studies carried out, from each leaf 2,8 to 4,5% of fibres can be extracted. This gives around 4 to 5 tons of fibres per hectare, which is more than that of cotton production per hectare. This quantity with no doubt could generate jobs to the people not only on the production of the fibres but also on their application in different areas
Resumo:
O trabalho objetivou comparar o ciclo cultural e a produção, além de avaliar atributos físico-químicos e sensoriais de frutos de bananeiras das cultivares Prata-Anã e Prata-Zulu, nas condições de Botucatu-SP. Foram avaliadas as seguintes características em campo: número de dias entre o plantio e o florescimento; número de dias entre o florescimento e a colheita; ciclo; peso do cacho; número de frutos por cacho; número de pencas por cacho; peso, número de frutos, comprimento e diâmetro dos frutos da 2ª penca. As análises físico-químicas foram realizadas no dia da colheita e a cada 3 dias, num período de 12 dias, sendo determinados: perda de massa, firmeza, relação polpa/casca, pH, acidez total titulável, e sólidos solúveis totais. Na análise sensorial, avaliou-se a aceitação dos atributos sabor, textura, aparência, aroma e apreciação geral dos frutos. Com os resultados obtidos, verificou-se que a cultivar Prata-Zulu apresentou produção bastante superior à 'Prata-Anã', o que indica ser uma cultivar com boas características agronômicas. Apesar de a cultivar Prata-Zulu apresentar maior perda de massa e menor firmeza, apresentou como vantagem frutos mais doces (maior SST); mesmo assim, a preferência do consumidor é pela 'Prata-Anã', que apresenta como principal vantagem as dimensões do fruto, que são menores, tornando-se assim mais práticos para o consumo.
Resumo:
Licuri is a palm tree from the semiarid regions of Bahia State, Brazil. It is an important source of food and feed in that region, since their nuts are commonly eaten by humans and used as maize substitute for poultry feeding. The aim of this dissertation is to study the feasibility for use of natural convection solar dryers and forced being compared with the traditional drying outdoors for drying coconut licuri Syagrus coronate. The study led to the construction of two prototype solar dryer for carrying out experiments proving: model Solar Drying System Direct Exposure to Natural Convection built with wood, has a drying chamber with direct cover transparent glass laminates 4 mm, using techniques for proper isolation of the drying chamber. The two prototypes were comparatively analyzed for performance and drying efficiency with traditional extractive use by the community. Were evaluated the variables: time and drying rates and quality of the final samples of coconut licuri. The fruits were harvested and brought the town of Ouricuri, in the city of Caldeirão Grande, BA for the experiments comparing the three methods of drying was used a standard load of 4.0 kg The quantitative analysis for the result of the drying rate was found in 74% yield and 44% for natural and forced convection respectively compared with the traditional drying. These drying rates represent variation 3-5 times lower. Drying using forced convection licuri showed better quality, was found in a reddish pulp, representing the quantities that were kept of the nutrient beta carotene, and not notice the flavor change from the previous system, the final cost of construction of this system were higher . The prototypes built competitive advantage and had testified fully to resolve the technical difficulties previously encountered in the production of products made of coconut licuri. Allowing add value and increase their potential use for the fruit extractive communities of semi-arid region of Bahia
Resumo:
Acerola (Malpighia emarginata D.C.) is a red fruit widely cultivated in Brazil, especially in the Northeastern region. Its increasing demand is attributed to its high ascorbic acid contents. Besides ascorbic acid, widely known by its health-benefit effects, acerola is rich in anthocyanins, which contribute for the antioxidant power of the fruit. Acerola processing produces a bright-red pomace, usually discarded. The further processing of this pomace, in order to explore its antioxidant compounds, could enhance acerola market value and rentability of its processing. Both ascorbic acid and anthocyanins are highly susceptible to degradation, that can be delayed by microencapsulation, which consists on packing particles (core) in an edible matrix (wall material). This work has been made with the purpose of producing a microencapsulated acerola pomace extract, which could be used by the food industry as a functional ingredient with antioxidant and coloring properties. Antioxidant compounds were recovered by pressing the pomace diluted in a solvent (a citric acid aqueous solution), by using a central composite design, with two variables: citric acid concentration in the solvent (0-2%), and solvent: pomace mass ratio (2:1-6:1). The acerola pomace extract was then microencapsulated by spray drying. A central composite design was adopted, with three variables: inlet temperature of the spray dryer (170o-200oC), wall material: acerola solids mass ratio (2:1-5:1), and degree of maltodextrin replacement by cashew tree gum as wall material (0-100%). The cashew tree gum was used because of its similarity to arabic gum, which is regarded as the wall material by excellence. The following conditions were considered as optimal for extraction of anthocyanins and ascorbic acid: solvent/pomace ratio, 5:1, and no citric acid in the solvent. 82.47% of the anthocyanins were recovered, as well as 83.22% of the ascorbic acid. Anthocyanin and ascorbic acid retentions were favored by lower inlet temperatures, higher wall material: acerola solids mass ratio and higher maltodextrin replacement by cashew tree gum, which was presented as a promising wall material. The more adequate microencapsulation conditions, based not only on retention of antioxidant compounds but also on physical properties of the final powder, were the following: inlet temperature, 185oC; wall material: acerola solids mass ratio, 5:1, and minimum degree of maltodextrin replacement by cashew tree gum, 50%
Resumo:
As an auxiliary tool to combat hunger by decreasing the waste of food and contributing for improvement of life quality on the population, CEASA/RN has released from August/03 to August/05 the program MESA DA SOLIDARIEDADE. Despite of the positive results of this program, that has already distributed around 226 tons of food, there is still food being thrown in the trash as the deliver of the same food in its natural form would be a health risk to those who would consume it and only the correct processing of this food can make it edible. This work has as a goal the reuse of solid residues of vegetal origin generated by the CEASA/RN, through the Program MESA DA SOLIDARIEDADE and the characterization of the product obtained so it might be used as a mineral complement in the human diet. To the collecting of samples (from September until December /2004) it was developed a methodology having as a reference the daily needs of mineral salts for infants at the age of seven to ten. The sample was packed in plastic bags and transported in an ambient temperature to the laboratory where it was selected, weighted, disinfected, fractionated and dried to 70ºC in greenhouse. The dry sample was shredded and stored in bottles previously sterilized. The sample in nature was weighted in the same proportion of the dry sample and it was obtained a uniform mass in a domestic processor. The physical-chemical analyses were carried out in triplicate in the samples in nature and in the dry product, being analyzed: pH, humidity, acidity and soluble solids according to IAL (1985), mineral salts contents (Ca, K, Na, Mg, P and Fe) determined by spectrophotometry of Atomic Absorption, caloric power through a calorimetric bomb and presence of fecal traces and E. coli through the colilert method (APHA, 1995). During this period the dry food a base of vegetables presented on average 5,06% of humidity, 4,62 of pH, acidity of 2,73 mg of citric acid /100g of sample, 51,45ºBrix of soluble solids, 2.323,50mg of K/100g, 299,06mg of Ca/100g, 293mg of Na/100g, 154,66mg of Mg/100g, 269,62mg of P/100g, 6,38mg of Fe/100g, caloric power of 3,691Kcal/g (15,502KJ/g) and is free of contamination by fecal traces and E..coli. The dry food developed in this research presented satisfactory characteristics regarding to its conservation, possessing low calories, constituting itself a good source of potassium, magnesium, sodium and iron that can be utilized as a food complement of these minerals
Resumo:
Objetivando avaliar o efeito da temperatura de imersão na manutenção da qualidade pós-colheita de frutos de maracujá-amarelo, instalou-se na FCA/UNESP este experimento, composto pelos seguintes tratamentos: T1 (testemunha); T2 (35°C por 2 horas); T3 (35°C por 4 horas); T4 (43°C por 2 horas); T5 (43°C por 4 horas); T6 (53°C por 2 horas); T7 (53°C por 4 horas), sendo os frutos mantidos em câmaras BOD a 12 ± 1 °C e 80-90% UR. A cada três dias, foram retiradas amostras dos tratamentos para as seguintes análises: Grupo destrutivo - pH, firmeza, sólidos solúveis (SS), acidez titulável (AT), relação (SS/AT), rendimento de polpa e vitamina C; e para o grupo-controle determinaram-se perda de massa e coloração da casca. Com base nos resultados obtidos, os tratamentos hidrotérmicos dos frutos, com temperaturas menores, como é o caso do T2 e T3, apresentaram frutos com menor perda de massa, melhor manutenção da coloração, boa manutenção da firmeza da casca e teores razoáveis de vitamina C, enquanto as temperaturas mais elevadas causaram danos à aparência dos frutos (queima da casca) e reduziram os teores de vitamina C na polpa.
Resumo:
O camu-camu (Myrciaria dubia (H.B.K.) McVaugh) produz fruto com grande potencial para extração de ácido ascórbico, que apresenta relevante importância econômica e social, com inúmeras aplicações industriais. O objetivo deste trabalho foi avaliar o efeito de diferentes formas de conservação e ambientes de armazenamento, sobre a manutenção da viabilidade das sementes. O delineamento experimental inteiramente casualizado, utilizando parcelas subsubdivididas, onde os fatores foram: ambiente de armazenamento (ao ar livre, em água, em câmara a 5 e a 10 ºC), forma de conservação (sementes com polpa - CP, sementes sem polpa - SP e sementes lavadas e tratadas - LT) e período de armazenamento (0; 2; 4 e 6 meses). O critério de avaliação adotado foi a protrusão da raiz primária. As sementes armazenadas em água, nas formas SP e LT, apresentaram germinação maior que 90%. As sementes nas formas CP e LT, armazenadas a 5 e a 10 ºC, tiveram germinação acima de 89%. O armazenamento em água e ao ar livre não afetou a germinação, podendo as sementes serem armazenadas durante o período de seis e quatro meses, respectivamente. As sementes CP, armazenadas em água, tiveram menor tempo médio para germinação. O índice de velocidade de germinação aumentou com o período de armazenamento e foi maior nas sementes armazenadas na água em todos os períodos. As sementes com polpa apresentaram menor índice de velocidade de germinação em todo o período de armazenamento avaliado.
Resumo:
A acerola é um fruto de grande potencial econômico e nutricional devido ao seu alto teor de vitamina C, destacando-se como alimento funcional. É comercializada principalmente na forma de polpa congelada e fruto in natura. O objetivo deste estudo foi avaliar a qualidade dos frutos da aceroleira cv. Olivier em dois estádios de maturação. Para tanto, foram colhidas amostras de frutos em um pomar comercial no município de Junqueirópolis-SP. Foram realizadas a determinação da cor externa dos frutos e análises das características químicas de teor de sólidos solúveis, pH, acidez titulável, açúcares redutores, 'ratio' e ácido ascórbico de frutos semi-maduros e maduros. Os resultados obtidos permitiram concluir que os frutos semimaduros apresentaram maior acidez total, menor teor de sólidos solúveis e menor concentração de açúcares; no entanto, estes frutos apresentaram maiores teores de vitamina C, expressa em ácido ascórbico. Portanto, quando se buscam altos índices de vitamina C, os frutos devem ser colhidos num estádio de maturação menos avançado, com coloração alaranjada. O estudo demonstrou também que a cv Olivier produz frutos com características adequadas tanto para o mercado in natura quanto para a indústria, apresentando boa coloração e características químicas dentro dos padrões para esta fruta.
Resumo:
O leiteiro (Peschiera fuchsiaefolia) é uma infestante de pastagens de importância para as regiões Sudeste e Centro-Oeste do Brasil, cuja dispersão ocorre por sementes. Com o objetivo de avaliar a qualidade fisiológica das sementes de leiteiro, em função do estádio de maturação e armazenamento dos frutos, foram colhidos frutos em cinco regiões diferentes, constituindo cinco acessos: lote 1-Vitoriana/SP, lote 2-Botucatu/SP, lote 3Bauru/SP, lote 4-São Manuel/SP e lote 5-São Pedro/SP. Cada lote de sementes foi avaliado individualmente, seguindo-se o delineamento estatístico inteiramente casualizado, com os tratamentos dispostos em esquema fatorial 2x4, sendo dois períodos de armazenamento dos frutos (0 e 7 dias após colheita) e quatro estádios de maturação (verde-oliva, verde-limão, alaranjado-fechado e alaranjado-aberto). A polpa dos frutos foi retirada e as sementes extraídas mediante fricção em peneira sob água corrente. As sementes foram colocadas para germinar a 30 ºC com 8 h de luz, sendo as contagens realizadas semanalmente até os 42 dias do início do teste. Os resultados dos testes da primeira contagem de germinação, IVG e condutividade elétrica mostraram que o vigor das sementes foi superior em frutos colhidos nos estádios finais de maturação e que, de modo geral, o armazenamento dos frutos prejudicou a qualidade das sementes.
Resumo:
This study aimed to investigate the foam mat drying process of pineapple and mango pulp, as well as to evaluate the final product quality. Initially, the selection of fruit and additives was conducted based on density and stability determinations of mango, seriguela, umbu and pineapple foams. After selecting pineapple and mango for further studies, the fruit pulps and fruit foams were characterized in regard to their physicochemical composition. The temperature (60oC or 70oC) and the foam thickness (4 and 11 mm) were evaluated in accordance to the obtained drying curves and after model adjustment. Mango and pineapple powders obtained at the best process conditions were characterized in regard to their physicochemical composition, solubility, reconstitution time. Yoghurts were prepared with the addition of pineapple and mango powders and they were evaluated for their sensory acceptance. Results show that the best drying rates were achieved by using 70o C and layers 4mm thick for both fruits. The Page model successfully fitted the drying experimental data and it can be used as a predictive model. Pineapple and mango powders showed acid pH, high soluble solids content, low water activity (approx. 0.25), lipids between 1.46% and 2.03%, protein around 2.00%, and ascorbic acid content of 17,73 mg/100g and 14.32 mg/100g, for mango and pineapple, respectively. It was observed higher ascorbic acid retention for pineapple and mango powders processed at 70o C, which would be explained by the lower drying time applied. The fruit powders exhibited high solubility and fast reconstitution in water. The sensory acceptance indexes for yoghurts with the addition of both fruit powders were higher than 70%, which reflect the satisfactory product acceptance
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Environmental sustainability has become one of the topics of greatest interest in industry, mainly due to effluent generation. Phenols are found in many industries effluents, these industries might be refineries, coal processing, pharmaceutical, plastics, paints and paper and pulp industries. Because phenolic compounds are toxic to humans and aquatic organisms, Federal Resolution CONAMA No. 430 of 13.05.2011 limits the maximum content of phenols, in 0.5 mg.L-1, for release in freshwater bodies. In the effluents treatment, the liquid-liquid extraction process is the most economical for the phenol recovery, because consumes little energy, but in most cases implements an organic solvent, and the use of it can cause some environmental problems due to the high toxicity of this compound. Because of this, exists a need for new methodologies, which aims to replace these solvents for biodegradable ones. Some literature studies demonstrate the feasibility of phenolic compounds removing from aqueous effluents, by biodegradable solvents. In this extraction kind called "Cloud Point Extraction" is used a nonionic surfactant as extracting agent of phenolic compounds. In order to optimize the phenol extraction process, this paper studies the mathematical modeling and optimization of extraction parameters and investigates the effect of the independent variables in the process. A 32 full factorial design has been done with operating temperature and surfactant concentration as independent variables and, parameters extraction: Volumetric fraction of coacervate phase, surfactant and residual concentration of phenol in dilute phase after separation phase and phenol extraction efficiency, as dependent variables. To achieve the objectives presented before, the work was carried out in five steps: (i) selection of some literature data, (ii) use of Box-Behnken model to find out mathematical models that describes the process of phenol extraction, (iii) Data analysis were performed using STATISTICA 7.0 and the analysis of variance was used to assess the model significance and prediction (iv) models optimization using the response surface method (v) Mathematical models validation using additional measures, from samples different from the ones used to construct the model. The results showed that the mathematical models found are able to calculate the effect of the surfactant concentration and the operating temperature in each extraction parameter studied, respecting the boundaries used. The models optimization allowed the achievement of consistent and applicable results in a simple and quick way leading to high efficiency in process operation.
Resumo:
The objective of this work was the development and improvement of the mathematical models based on mass and heat balances, representing the drying transient process fruit pulp in spouted bed dryer with intermittent feeding. Mass and energy balance for drying, represented by a system of differential equations, were developed in Fortran language and adapted to the condition of intermittent feeding and mass accumulation. Were used the DASSL routine (Differential Algebraic System Solver) for solving the differential equation system and used a heuristic optimization algorithm in parameter estimation, the Particle Swarm algorithm. From the experimental data food drying, the differential models were used to determine the quantity of water and the drying air temperature at the exit of a spouted bed and accumulated mass of powder in the dryer. The models were validated using the experimental data of drying whose operating conditions, air temperature, flow rate and time intermittency, varied within the limits studied. In reviewing the results predicted, it was found that these models represent the experimental data of the kinetics of production and accumulation of powder and humidity and air temperature at the outlet of the dryer
Resumo:
A recuperação de áreas degradadas é um processo lento e requer a adição de resíduos orgânicos como condicionador das propriedades físicas do solo. O lodo de esgoto apresenta elevados teores de matéria orgânica (MO) e nutrientes e, portanto, tem alto potencial para utilização nessas áreas. O objetivo deste trabalho foi verificar o efeito da adição de lodo de esgoto na recuperação das características físicas de um solo degradado (Neossolo Quartzarênico) plantado com espécies nativas da Mata Atlântica, na Fazenda Entre-Rios, pertencente à Cia. Suzano Bahia Sul de Papel e Celulose, na região de Itatinga-SP. O experimento foi conduzido em blocos casualizados com quatro repetições. Os tratamentos foram constituídos por seis doses de lodo de esgoto (0, 2,5, 5, 10, 15 e 20 t ha-1), mais um que recebeu a adubação química. A aplicação de lodo de esgoto, para recuperação de áreas degradadas, aumentou os agregados do solo conforme o aumento das doses de lodo, até 12 meses após sua aplicação. As porosidades (macro, micro e total) do solo foram aumentadas com as maiores doses de lodo de esgoto até seis meses após sua aplicação; apenas a microporosidade foi aumentada até 12 meses após a aplicação. Houve aumento da umidade do solo em função do aumento das doses de lodo no solo até seis meses após a aplicação.