968 resultados para chemical soil characteristics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study deals with the diversity in structural and spectural characteristics of some transition metal complexes derived from aldehyde based thiosemicarbazone ligands thiosemicarbazones are a family of compounds with beneficial biological activity viz., anticancer,antitumour, antifungal, antibacterial, antimalarial, antifilarial, antiviral and anti-HIV activities. Many thiosemicarbazone ligands and their complexes have been prepared and screened for their antimicrobial activity against various types of fungi and bacteria. The results prove that the compounds exhibit antimicrobial properties and it is important to note that in some cases metal chelates show more inhibitory effects than the parent ligands. The increased lipophilicity of these complexes seems to be responsible for their enhanced biological potency. Adverse biological activities of thiosemicarbazones have been widely studied in rats and in other species. The parameters measured show that copper complexes caused considerable oxidative stress and zinc zinc complexes behaved as antioxidants. It has applications on analytical field also. Some thiosemicarbazones produce highly colored complexes with metal ions. This thesis aims to synthesis some novel thiosemicarbazone ligands and their transition metal complexes together with their physico-chemical characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a detailed attempt has been made to understand the general hydrography of the upper 300m of the water column, in the eastern Arabian Sea and the western Bay of Bengal, the two contrasting basins in the northern Indian Ocean, using recently collected data sets of Marine Research-Living Resources (MR-LR) assessment programme, funded by Department of Ocean Development, from various cruises, pertaining to different seasons. Initially it discuss the general hydrography of the west and east coasts of India are covered, in the context of mixed layer processes. The study describes the materials and methods . To compare the hydrography of the AS and BOB, a unique MLD(Mixed Layer Depth) definition for AS and BOB is essential, for which the 275 CTD profiles were used. A comparison has been made among the various MLD criteria with the actual MLD. The monthly evolution of MLD, barrier layer thickness and the role of atmospheric forcing on the dynamics of the mixed layer in the AS and BOB were studied. The general hydrography along the west coast of India is described. The upwelling/downwelling, winter cooling processes, in the context of chemical and biological parameters, are also addressed. Finally the general hydrography of the Bay of Bengal is covered. The most striking feature in the hydrography are the signature of an anticyclonic subtropical gyre during spring intermonsoon and a cold core eddy during winter monsoon. The TTS(Typical Tropical Structure) of the euphotic layer was also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of 50/50 natural rubber (NR) and styrene-butadiene rubber (SBR) are vulcanized using several conventional and semi-EV systems. The cure characteristics and vulcanizate properties are compared. The quantity and quality of crosslinks in each case are deciphered by chemical probes to correlate them with the vulcanizate properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carbon black filled 50/50 Natural Rubber (NR)/Polybutadiene Rubber (BR) blend is vulcanized using several conventional systems designed by varying the amounts of sulphur and accelerator . The cure characteristics and the vulcanizate properties are compared. The quality and quantity of crosslinks in each case are deciphered by chemical probes to correlate them with the vulcanizate properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we present the spectral and nonlinear optical properties of ZnO–CdS nanocomposites prepared by colloidal chemical synthesis. The optical band gap (Eg) of the material is tunable between 2.62 and 3.84 eV. The emission peaks of ZnO–CdS nanocomposites change from 385 to 520 nm almost in proportion to changes in Eg. It is possible to obtain a desired luminescence color from UV to green by simply adjusting the composition. The nonlinear optical response of these samples is studied by using nanosecond laser pulses from a tunable laser at the excitonic resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent, and switching from saturable absorption (SA) to reverse SA (RSA) has been observed for samples as the excitation wavelength changes from the excitonic resonance to off-resonance wavelengths. Such a changeover in the sign of the nonlinearity of ZnO–CdS nanocomposites is related to the interplay of exciton bleach and optical limiting mechanisms. The ZnO–CdS nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior at off-resonant wavelengths. The nonlinear refractive index and the nonlinear absorption increase with increasing CdS volume fraction at 532 nm. The observed nonlinear absorption is attributed to two photon absorption followed by weak free carrier absorption. The enhancement of the third-order nonlinearity in the composites can be attributed to the concentration of exciton oscillator strength. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA based optical limiter. ZnO–CdS is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study on natural antioxidants, the focus has been kept mainly on oil seeds, especially sesame and its by-products. Sesame, which has been under cultivation in India for centuries is called the 'Queen of oil seed crops' because of the high yield of oil obtained and the nutritional qualities of the seed, oil, and meal. Though India is the largest producer of sesame in the world, research on the various health benefits of sesame has been carried out by Japanese Sesame has an important place in the foods and tradit..ional medicine of India from time immemorial. Foreseeing the potential of sesame and its byproducts as an important antioxidant source and its availability in bulk, the present study was focussed on Sesamum species. There are not many reports on the wild species of Sesamum in India, especially of the Kerala region. Hence, in the present study we also included antioxidants of Sesamurnrnalabaricumdistributed throughout the coastal region.The important characteristics of sesame are attributed to the presence of the umquc compounds lignans. Lignans arc a group of natural products of phenyl propanoid ongm, whieh are widely distributed in nature. They display important physiological functions in plants, in human nutrition and medicine, given their extensive health promotive and curative properties. Much interest has been focussed on their effectiveness as antineoplastic agents and research in this area has revealed several modes of action by which they can regulate the growth of mammalian cells. Sesame is an important source of furofuran lignans, of which sesamin and the rare oxygenated derivative sesamoIin are the most abundant. Others include sesamol and glucosides of lignans. Sesarnin and episesamin are reported to have hypocholesterolemic effect, suppressive effect on chemically induced cancer, alleviation of allergy symptoms etc. Sesamol, sesamolin and the lignan glycosides are reported to inhibit lipid peroxidation. Present investigation on sesame and its byproducts have been carried out to explore the possibility of developing a natural antioxidant extract from available resources to be used as a substitute to synthetic ones in vegetable oils and foods. Preliminary analysis showed that sesame cake, a byproduct could still be utilized as a major source of lignans. Sesame cake, which is now used only as a cattlefeed, can be better utilized in the form of a valuable antioxidant source. The present study explains the development of a feasible process for the extraction of antioxidant compounds from sesame cake. The antioxidant extract so prepared from sesame cake has been tested for vegetable oil protection and is found to be effective at low concentration. In addition, studies also include the antioxidant, radical scavenging, anticancer, mosquitocidal and pesticidal activities of extract and individual compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface acidity and basicity of binary oxides of Zr with Ce and La are determined using a series of Hammet indicators and Ho,,max values are reported. The generation of new acid sites habe been ascribed to the charge imbalance of M1-O-M2 bonds, where M1 and M2 are metal atoms. Both Bronsted and Lewis acid sites contribute to the acidity of the oxides

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we present the nonlinear optical properties of ZnO–TiO2–SiO2 nanocomposites prepared by colloidal chemical synthesis. Nonlinear optical response of these samples is studied using nanosecond laser pulses at an off-resonance wavelength. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and TiO2. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increases with increasing ZnO volume fraction. The observed nonlinear absorption is explained by two photon absorption followed by weak free carrier absorption and nonlinear scattering. ZnO–TiO2–SiO2 is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter we present the spectral and nonlinear optical properties of ZnO–Ag nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed and the strongest UV emission is over three times than that of pure ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour which increases with increasing Ag volume fraction. The observed nonlinear absorption is explained through two photon absorption followed by free carrier absorption. ZnO–Ag is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the spectral and nonlinear optical properties of ZnO-SiO2 nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed, and the strongest UV emission of a typical ZnO-SiO2 nanocomposite is over three times stronger than that of pure ZnO. The nonlinearity of the silica colloid is low, and its nonlinear response can be improved by making composites with ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absorption and nonlinear scattering. The nonlinear refractive index and the nonlinear absorption increase with increasing ZnO volume fraction and can be attributed to the enhancement of exciton oscillator strength. ZnO-SiO2 is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis on the"Benthic ecology of selected prawn culture fields and ponds near Cochin” was taken up with a view to provide information on the qualitative and quantitative distribution of benthos and their relationships to prawnproduction of different culture ecosystems and to the physico-chemical parameters influencing their production. A two-year observation was carried out in nine selected prawn culture systems including perennial ponds (stations 1 to 4) seasonal fields (stations 5 to 7) and contiguous canals (stations 8 and 9) during December 1988 to November 1989. All macro- and meiobenthic organisms contributing to the faua were identified and their abundance, distribution, diversity, biomass and trophic relationships between benthos and prawns were studied. The environmental variables studied were temperature pH, salinity, dissolved oxygen, alkalinity, nitrite-nitrogen, nitrate-nitrogen, amonianitrogen, phosphate and silicate of bottom water and organic carbon and texture of the soil The thesis is presented in 4 Chapters. Chapter I presents an’ INTRODUCTION to the topic of study and a review of relevant works to bring an awareness to the present status of research in benthos and benthic ecology. Chapter 11, MATERIALS AND MTHODS, includes the techniques of sampling, preservation of samples and methods of analyses of various physico-chemical factors and area covered under the study is also given in this chapter. Chapter III, HYDROGRAPHY deals with the results of investigation and discussion onthe physico-chemical parameters of water and Chapter IV, SEDIMENT covers the sedimentoloical characteristics of the different culture systems followed by a detailed discussion. Chapter V, BOTTOM FAUNA presents an account on the various aspects of benthos and benthic ecology and the details of prawn production. A discussion on the overall assessment of interrelations between abiotic and biotic factors is given in Chapter VI, DISCUSSION. A critical evaluation of the implication of benthic production on prawn production under culture conditions and trophic relationships are also included in this chapter. An executive SUMMARY of the observations made during this study is presented in the final section of the thesis .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mangroves are considered to play a significant role in global carbon cycling. Themangrove forests would fix CO2 by photosynthesis into mangrove lumber and thus decrease the possibility of a catastrophic series of events - global warming by atmospheric CO2, melting of the polar ice caps, and inundation of the great coastal cities of the world. The leaf litter and roots are the main contributors to mangrove sediments, though algal production and allochthonous detritus can also be trapped (Kristensen et al, 2008) by mangroves due to their high organic matter content and reducing nature are excellent metal retainers. Environmental pollution due to metals is of major concern. This is due to the basic fact that metals are not biodegradable or perishable the way most organic pollutants are. While most organic toxicants can be destroyed by combustion and converted into compounds such as C0, C02, SOX, NOX, metals can't be destroyed. At the most the valance and physical form of metals may change. Concentration of metals present naturally in air, water and soil is very low. Metals released into the environment through anthropogenic activities such as burning of fossils fuels, discharge of industrial effluents, mining, dumping of sewage etc leads to the development of higher than tolerable or toxic levels of metals in the environment leading to metal pollution. Of course, a large number of heavy metals such as Fe, Mn, Cu, Ni, Zn, Co, Cr, Mo, and V are essential to plants and animals and deficiency of these metals may lead to diseases, but at higher levels, it would lead to metal toxicity. Almost all industrial processes and urban activities involve release of at least trace quantities of half a dozen metals in different forms. Heavy metal pollution in the environment can remain dormant for a long time and surface with a vengeance. Once an area gets toxified with metals, it is almost impossible to detoxify it. The symptoms of metal toxicity are often quite similar to the symptoms of other common diseases such as respiratory problems, digestive disorders, skin diseases, hypertension, diabetes, jaundice etc making it all the more difficult to diagnose metal poisoning. For example the Minamata disease caused by mercury pollution in addition to affecting the nervous system can disturb liver function and cause diabetes and hypertension. The damage caused by heavy metals does not end up with the affected person. The harmful effects can be transferred to the person's progenies. Ironically heavy metal pollution is a direct offshoot of our increasing ability to mass produce metals and use them in all spheres of existence. Along with conventional physico- chemical methods, biosystem approachment is also being constantly used for combating metal pollution

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gel strength, compressibility and folding characteristic of suwari (set) and kamaboko (set and cooked) gels prepared from rohu (Labeo rohita), catla (Catla catla) and mrigal (Cirrhinus mrigala) surimi were examined to understand the occurrence of suwari and modori phenomena in surimi from major freshwater carps. Suwari setting of gels did not take place at lower temperatures. Suwari gels showed good gel strength at 50 C for rohu and at 60 C for catla and mrigal after 30 min setting time