951 resultados para cell-mediated immunity
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
The present article describes an L-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host`s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 mu g/mL and 50 mu g/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The expression of ABO(H) blood group antigens causes deletion of cells that generate self-specific antibodies to these antigens but this deletion limits adaptive immunity toward pathogens bearing cognate blood group antigens. To explore potential defense mechanisms against such pathogens, given these limitations in adaptive immunity, we screened for innate proteins that could recognize human blood group antigens. Here we report that two innate immune lectins, galectin-4 (Gal-4) and Gal-8, which are expressed in the intestinal tract, recognize and kill human blood group antigen-expressing Escherichia coli while failing to alter the viability of other E. coli strains or other Gram-negative or Gram-positive organisms both in vitro and in vivo. The killing activity of both Gal-4 and Gal-8 is mediated by their C-terminal domains, occurs rapidly and independently of complement and is accompanied by disruption of membrane integrity. These results demonstrate that innate defense lectins can provide immunity against pathogens that express blood group-like antigens on their surface.
Resumo:
The course and outcome of infection with mycobacteria are determined by a complex interplay between the immune system of the host and the survival mechanisms developed by the bacilli. Recent data suggest a regulatory role of histamine not only in the innate but also in the adaptive immune response. We used a model of pulmonary Mycobacterium tuberculosis infection in histamine-deficient mice lacking histidine decarboxylase (HDC(-/-)), the histamine-synthesizing enzyme. To confirm that mycobacterial infection induced histamine production, we exposed mice to M. tuberculosis and compared responses in C57BL/6 (wild-type) and HDC(-/-) mice. Histamine levels increased around fivefold above baseline in infected C57BL/6 mice at day 28 of infection, whereas only small amounts were detected in the lungs of infected HDC(-/-) mice. Blocking histamine production decreased both neutrophil influx into lung tissue and the release of proinflammatory mediators, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha), in the acute phase of infection. However, the accumulation and activation of CD4(+) T cells were augmented in the lungs of infected HDC(-/-) mice and correlated with a distinct granuloma formation that contained abundant lymphocytic infiltration and reduced numbers of mycobacteria 28 days after infection. Furthermore, the production of IL-12, gamma interferon, and nitric oxide, as well as CD11c(+) cell influx into the lungs of infected HDC(-/-) mice, was increased. These findings indicate that histamine produced after M. tuberculosis infection may play a regulatory role not only by enhancing the pulmonary neutrophilia and production of IL-6 and TNF-alpha but also by impairing the protective Th1 response, which ultimately restricts mycobacterial growth.
Resumo:
Mast Cells (MCs) express toll-like receptor 2 (TLR2), a receptor known to be triggered by several major mycobacterial ligands and involved in resistance against Mycobacterium tuberculosis (MTB) infection. This study investigated whether adoptive transfer of TLR2 positive MCs (TLR2(+/+)) corrects the increased susceptibility of TLR2(-/-) mice to MTB infection. TLR2(-/-) mice displayed increased mycobacterial burden, diminished myeloid cell recruitment and proinflammatory cytokine production accompanied by defective granuloma formation. The reconstitution of these mice with TLR2(+/+) MCs, but not TLR2(-/-), confers better control of the infection, promotes the normalization of myeloid cell recruitment associated with reestablishment of the granuloma formation. In addition, adoptive transfer of TLR2(+/+) MC to TLR2(-/-) mice resulted in regulation of the pulmonary levels of IL-beta, IL-6, TNF-alpha, enhanced Th1 response and activated CD8(+) T cell homing to the lungs. Our results suggest that activation of MCs via TLR2 is required to compensate the defect in protective immunity and inability of TLR2(-/-) mice to control MTB infection. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
The aim of this study was to investigate the role of interleukin 12 (IL-12) during Strongyloides venezuelensis infection. IL-12(-/-) and wildtype C57BL/6 mice were subcutaneously infected with 1500 larvae of S. venezuelensis. On days 7, 14, and 21 post-infection, we determined eosinophil and mononuclear cell numbers in the blood and broncoalveolar lavage fluid (BALF), Th2 cytokine secretion in the lung parenchyma, and serum antibody levels. The numbers of eggs in the feces and worm parasites in the duodena were also quantified. The eosinophil and mononuclear cell counts and the concentrations of IL-3, IL-5, IL-10, IL-13, and IgG1 and IgE antibodies increased significantly in infected IL-12(-/-) and wild-type mice as compared with uninfected controls. However, the number of eosinophils and mononuclear cells in the blood and BALF and the Th2 cytokine levels in the lungs of infected IL-12-/- mice were greater than in infected wild-type C57BL/6 mice. In addition, serum IgE and IgG1 levels were also significantly enhanced in the infected mice lacking IL-12. Meanwhile, parasite burden and fecal egg counts were significantly decreased in infected IL-12-/- mice. Together, our results showed that the absence of IL-12 upregulates the Th2 immune response, which is important for control of S. venezuelensis infection. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
P2X purinoceptors have been suggested to participate in transduction of painful stimuli in nociceptive neurons. In the current experiments, ATP (1-10 mM), alpha,beta-methylene-ATP (10-30 mu M) and capsaicin (10 nM-1 mu M) were applied to neurons impaled with high resistance microelectrodes in rat dorsal root ganglia (L4 and L5) isolated in vitro together with the sciatic nerve and dorsal roots. The agonists were either bath applied or focally applied using a picospritzer. GABA (100 mu M) and 40-80 mM K+ solutions gave brisk responses when applied by either technique. Only three of 22 neurons with slowly conducting axons (C cells) showed evidence of P2X-purinoceptor-mediated responses. Only two of 13 cells which responded to capsaicin (putative nociceptors), and none of 29 cells with rapidly conducting axons (A cells), responded to the purinergic agonists. When acutely dissociated dorsal root ganglion cells were studied using patch-clamp techniques, all but four of 30 cells of all sizes responded with an inward current to either ATP or alpha,beta-methylene-ATP (both 100 mu M). Our data suggest that few sensory cell bodies in intact dorsal root ganglia express functional purinoceptors. (C) 1998 IBRO. Published by Elsevier Science Ltd.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Molecular mechanisms of zinc potentiation were investigated in recombinant human alpha 1 glycine receptors (GlyRs) by whole-cell patch-clamp recording and [H-3]strychnine binding assays. In the wild-type (WT) GlyR, 1 mu M zinc enhanced the apparent binding affinity of the agonists glycine and taurine and reduced their concentrations required for half-maximal activation. Thus, in the WT GlyR, zinc potentiation apparently occurs by enhancing agonist binding. However, analysis of GlyRs incorporating mutations in the membrane-spanning domain M1-M2 and M2-M3 loops, which are both components of the agonist gating mechanism, indicates that most mutations uncoupled zinc potentiation from glycine-gated currents but preserved zinc potentiation of taurine-gated currents. One such mutation in the M2-M3 loop, L274A, abolished the ability of zinc to potentiate taurine binding but did not inhibit zinc potentiation of taurine-gated currents. In this same mutant where taurine acts as a partial agonist, zinc potentiated taurine-gated currents but did not potentiate taurine antagonism of glycine-gated currents, suggesting that zinc interacts selectively with the agonist transduction pathway. The intracellular M246A mutation, which is unlikely to bind zinc, also disrupted zinc potentiation of glycine currents. Thus, zinc potentiation of the GlyR is mediated via allosteric mechanisms that are independent of its effects on agonist binding.
Resumo:
The p75 neurotrophin receptor (p75NTR) has been shown to mediate neuronal death through an unknown pathway. We microinjected p75NTR expression plasmids into sensory neurons in the presence of growth factors and assessed the effect of the expressed proteins on cell survival. We show that, unlike other members of the TNFR family, p75NTR signals death through a unique caspase-dependent death pathway that does not involve the death domain and is differentially regulated by Bcl-2 family members: the anti-apoptotic molecule Bcl-2 both promoted, and was required for, p75NTR killing, whereas killing was inhibited by its homologue BcI-x(L). These results demonstrate that Bcl-2, through distinct molecular mechanisms, either promotes or inhibits neuronal death depending on the nature of the death stimulus.
Resumo:
1 We identified putative beta(4)-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (-)-CGP 12177 and (+/-)-cyanopindolol and demonstrated increased Ca2+ transients by (-)-CGP 12177 in rat cardiomyocytes. 2 (-)-[H-3]-CGP 12177 labelled 13-22 fmol mg(-1) protein ventricular beta(1), beta(2)-adrenoceptors (pK(D) similar to 9.0) and 50-90 fmol mg(-1) protein putative beta(4)-adrenoceptors (pK(D) similar to 7.3). The affinity values (PKi) for (beta(1),beta(2)-) and putative beta(4)-adrenoceptors, estimated from binding inhibition, were (-)-propranolol 8.4, 5.7; (-)-bupranolol 9.7, 5.8; (+/-)-cyanopindolol 10.0,7.4. 3 In left ventricular papillary muscle, in the presence of 30 mu M 3-isobutyl-1-methylxanthine, (-)CGP 12177 and (+/-)-cyanopindolol caused positive inotropic effects, (pEC(50) (-)-CGP 12177, 7.6; (+/-)-cyanopindolol, 7.0) which were antagonized by (-)-bupranolol (pK(B) 6.7-7.0) and (-)-CGP 20712A (pK(B) 6.3-6.6). The cardiostimulant effects of(-)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (+/-)-cyanopindolol (pK(i), 7.0-7.4). 4 (-)-CGP 12177 (1 mu M) in the presence of 200 nM (-)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 mu M 3-isobutyl-1-methylxanthine and 200 nM (-)-propranolol, 1 mu M (-)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (-)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes. 5 Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative beta(4)-adrenoceptors. suggesting coupling to G(s) protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative beta(4)-adrenoceptors labelled with (-)-[H-3]-CGP 12177.
Resumo:
Administration of polyamines into the central nervous system results in tissue damage, possibly through the excitotoxic actions of the NMDA receptor. Direct injection of 100 nmol of spermine into the rat striatum produced a lesion equivalent to approximately 50% of the striatum. Analysis of the DNA in this region revealed the distinct ladder-like pattern of degradation often associated with apoptosis. This DNA fragmentation was confirmed in vivo using terminal deoxynucleotidyl-transferase-mediated biotinylated deoxyuridine triphosphate nick end labelling (TUNEL). The morphology of the TUNEL-positive cells showed marked differences at the needle tract when compared with cells in damaged areas away from the needle tract, suggesting a differential mechanism of cell death in these two regions. The patterns of p53, c-Fos and c-Jun protein expression were determined using immunohistochemistry. The number of p53-immunoreactive cells increased up to 14 h and returned to basal levels by 24 h. c-Fos protein expression transiently increased, peaking at 8 h after injection, c-Jun exhibited a protracted pattern of expression, remaining elevated up to 24 h. p53 protein expression was colocalised with TUNEL staining in areas away from the needle tract, but not in cells at the needle tract, suggesting once again a differential mechanism of cell death. At 14 h, c-Fos and c-Jun were not colocalised with TUNEL staining, suggesting that they are either not involved with the cell death process or that the time course of protein expression and the onset of DNA fragmentation do not overlap. This work represents the first characterisation of processes associated with cell death induced by spermine in vivo.
Resumo:
Dendritic cells (DC) are considered to be the major cell type responsible for induction of primary immune responses. While they have been shown to play a critical role in eliciting allosensitization via the direct pathway, there is evidence that maturational and/or activational heterogeneity between DC in different donor organs may be crucial to allograft outcome. Despite such an important perceived role for DC, no accurate estimates of their number in commonly transplanted organs have been reported. Therefore, leukocytes and DC were visualized and enumerated in cryostat sections of normal mouse (C57BL/10, B10.BR, C3H) liver, heart, kidney and pancreas by immunohistochemistry (CD45 and MHC class II staining, respectively). Total immunopositive cell number and MHC class II+ cell density (C57BL/10 mice only) were estimated using established morphometric techniques - the fractionator and disector principles, respectively. Liver contained considerably more leukocytes (similar to 5-20 x 10(6)) and DC (similar to 1-3 x 10(6)) than the other organs examined (pancreas: similar to 0.6 x 10(6) and similar to 0.35 x 10(6): heart: similar to 0.8 x 10(6) and similar to 0.4 x 10(6); kidney similar to 1.2 x 10(6) and 0.65 x 10(6), respectively). In liver, DC comprised a lower proportion of all leukocytes (similar to 15-25%) than in the other parenchymal organs examined (similar to 40-60%). Comparatively, DC density in C57BL/10 mice was heart > kidney > pancreas much greater than liver (similar to 6.6 x 10(6), 5 x 10(6), 4.5 x 10(6) and 1.1 x 10(6) cells/cm(3), respectively). When compared to previously published data on allograft survival, the results indicate that the absolute number of MHC class II+ DC present in a donor organ is a poor predictor of graft outcome. Survival of solid organ allografts is more closely related to the density of the donor DC network within the graft. (C) 2000 Elsevier Science B.V. All rights reserved.
Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death
Resumo:
The cytoplasmic juxtamembrane region of the p75 neurotrophin receptor (p75(NTR)) has been found to be necessary and sufficient to initiate neural cell death. The region was named Chopper to distinguish it from CD95-like death domains. A 29-amino acid peptide corresponding to the Chopper region induced caspase- and calpain-mediated death in a variety of neural and nonneural cell types and was not inhibited by signaling through Trk (unlike killing by full-length p75(NTR)). Chopper triggered cell death only when bound to the plasma membrane by a lipid anchor, whereas non-anchored Chopper acted in a dominant-negative manner, blocking p75(NTR)-mediated death both in vitro and in vivo. Removal of the ectodomain of p75(NTR) increased the potency of Chopper activity, suggesting that it regulates the association of Chopper with downstream signaling proteins.