982 resultados para carrying
Resumo:
并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,因而扩大了整个机器人的应用领域。本文综述了并联机器人的研究现状:包括并联机器人的特点,运动学建模,动力学建模,应用状况等。
Resumo:
根据运动学等效的原则,在并联机器人中引入等效串联机器人及分支等效串联机器人,以等效广义坐标为中间变量建立并联机器人运动学正道解求解算法。该算法能有效处理结构带来的运动耦合,并且规划的软件具有自动生成迭代初始点、避免多解性以及便于实际应用等特点,从而为并联机器人的结构设计与创新提供了理论支持。
Resumo:
本文介绍了目前第一条完全由国内生产的全自动托辊装配线及其制造信息系统。该套装系统除具有较高的自动化程度外,还充分利用先进的伺服控制技术,采用先进的SIMOTION运动控制系统,实现了托辊产品装配的柔性化。同时在软件及信息管理方面充分考虑到先进制造管理的理念,为企业的MES系统及管理信息系统的实施和升级提供了充分的接口,从而打造出一条具有较高科技含量和先进性的自动装配线。
Resumo:
本文介绍了一种新型托辊自动化装配线上的在线检测机床控制系统,对系统的硬件组态及控制功能作了主要描述。该机床的主要功能是对装配完成的托辊进行性能测试,并采集其性能参数,根据采集并处理后的数据来判定检测的产品是否合格。整个机床控制系统主要由SIMOTION运动控制系统、人机操作触摸屏、远程输入输出模块ET200M、数据采集传感器、到位检测开关、电源及控制回路等组成。
Resumo:
托辊在国民经济的各行各业扮演着十分重要的角色,尤其在矿业生产的输送过程中,托辊更是发挥着巨大的作用。本项目旨在为托辊的自动化装配线提供整套控制执行系统。本文根据沈阳机床集团所提出的装配线控制要求,在查阅大量相关文献基础上,分析了托辊装配的整个工艺过程,结合先进制造的理念和技术,研究设计出包括制造过程底层信息系统在内的装配线控制系统。本文主要完成了以下研究工作及相关的创新性成果: 系统的供配电设计。根据设备的配电要求及相关规范,对整套控制系统的供配电进行合理的设计。 整条装配线的协调控制及信息系统设计与实现。结合目前广泛采用的工业现场总线技术,设计了整套分层控制及信息系统。整套系统分为三层,在顶层设计有监控系统,该系统通过以太网与下层的单台机床控制器进行信息互换。通过OPC技术将底层控制器采集到的现场信息在上位机上以友好的图文界面显示出来,供操作人员监控。同时还将每台机床的相关信息及以往报警历史按时间进行归档,形成现场装配过程信息备份,供上层的分析与决策系统使用。 现场每台机床采用独立的现场控制器进行控制。因为整条装配线被设计定位为柔性装配线,所以在机床控制上采用了伺服控制技术,以实现针对不同装配产品型号对托辊的支撑及夹具进行准确定位。控制器采用集逻辑、工艺、伺服控制于一体的西门子SIMOTION控制器。该控制器完成整个机床的动作及工艺控制,同时在现场每台机床控制器都配备一个触摸屏作为现场级人机界面,供机床现场调试和人机交互之用。 论文从整体上阐述了装配线控制系统的整体架构,并结合在线检测机床对机床的控制进行了讨论,从多方面体现出该控制及信息系统的完整性和先进性。 该项目开发的托辊装配线控制及信息系统旨在实现托辊安全、快速地自动化装配。并以单台机床单元控制器为主体通过现场总线技术为上层信息管理系统提供信息接口,为整条线的管理功能智能化扩展提供一个良好的平台。
Resumo:
With the Oil field exploration and exploitation, the problem of supervention and enhaning combination gas recovery was faced.then proposing new and higher demands to precision of seismic data. On the basis of studying exploration status,resource potential,and quality of 3D seismic data to internal representative mature Oil field, taking shengli field ken71 zone as study object, this paper takes advantage of high-density 3D seismic technique to solving the complex geologic problem in exploration and development of mature region, deep into researching the acquisition, processing of high-density 3D seismic data. This disseration study the function of routine 3D seismic, high-density 3D seismic, 3D VSP seismic,and multi-wave multi-component seismic to solving the geologic problem in exploration and development of mature region,particular introduce the advantage and shortage of high-density 3D seismic exploration, put forward the integrated study method of giving priority to high-density 3D seismic and combining other seismic data in enhancing exploration accuracy of mature region. On the basis of detailedly studying acquisition method of high-density 3D seismic and 3D VSP seismic,aming at developing physical simulation and numeical simulation to designing and optimizing observation system. Optimizing “four combination” whole acquisition method of acquisition of well with ground seimic and “three synchron”technique, realizing acquisition of combining P-wave with S-wave, acquisition of combining digit geophone with simulation geophone, acquisition of 3D VSP seismic with ground seimic, acquisition of combining interborehole seismic,implementing synchron acceptance of aboveground equipment and downhole instrument, common use and synchron acceptance of 3D VSP and ground shots, synchron acquisition of high-density P-wave and high-density multi-wave, achieve high quality magnanimity seismic data. On the basis of detailedly analysising the simulation geophone data of high-density acquisition ,adopting pertinency processing technique to protecting amplitude,studying the justice matching of S/N and resolution to improving resolution of seismic profile ,using poststack series connection migration,prestack time migration and prestack depth migration to putting up high precision imaging,gained reliable high resolution data.At the same time carrying along high accuracy exploration to high-density digit geophone data, obtaining good improve in its resolution, fidelity, break point clear degree, interbed information, formation characteristics and so on.Comparing processing results ,we may see simulation geophone high-density acquisition and high precision imaging can enhancing resolution, high-density seismic basing on digit geophone can better solve subsurface geology problem. At the same time, fine processing converted wave of synchron acquisition and 3D VSP seismic data,acquiring good result. On the basis of high-density seismic data acquisition and high-density seismic data processing, carry through high precision structure interpretation and inversion, and preliminary interpretation analysis to 3D VSP seismic data and multi-wave multi-component seismic data. High precision interpretation indicates after high resolution processing ,structural diagram obtaining from high-density seismic data better accord with true geoligy situation.
Resumo:
Today, because of high petroleum consumption of our country, society steady development and difficulty increase in new resources exploration, deep exploitation of the existing oilfield is needed. More delicate reservoir imaging and description, such as thin layer identification, interlayer exploitation monitoring, subtle structure imaging, reservoir anisotropy recognition, can provide more detail evidence for new development adjustment scheme and enhanced oil recovery. Now, the people have already realized the 3D VSP technique more effective than the general methods in solving these aspects. But VSP technique especially 3D VSP develop slowly due to some reasons. Carrying out the research of VSP technique, it will be very useful to the EOR service. 3D VSP techniques include acquisition、data processing and interpretation. In this paper, the author carried out some researches around acquisition and processing. The key point of acquisition is the survey design, it is critical to the quality of the data and it will influence the reservoir recognition as follows. The author did detailed researches on the layout pattern of shot point and geophone. Some attributes relate to survey design such as reflectivity, incidence angle, observation area, reflection points distribution, fold, minimum well source distance, azimuth angle and so on are studied seriously. In this geometry design of 3D-VSP exploration in deviated wells, the main problems to be solved are: determining the center position of shots distribution, the effect of shots missing on coverage areas and coverage times,locating the shots and receivers of multi-wells. Through simulating and analyzing, the above problems are discussed and some beneficial conclusions are drawn. These will provide valuable references to actual survey design. In data processing, researches emphasize on those relatively key techniques such as wavefield separation, VSP-CDP imaging, the author carried out deep researches around these two aspects. As a result, variant apparent slowness wavefield separation method developed in this article suit the underground variant velocity field and make wavefield separation well, it can overcome reflection bending shortage aroused by conventional imaging method. The attenuateion range of underground seismic wave is very important for amplitude compensation and oil/gas identification.In this paper, seismic wave attenuateion mechanism is studied by 3D-VSP simulateion and Q-inversion technique. By testing with seismic data, the method of VSP data attenuateion and relationship of attenuateion attribute variant with depth is researched. Also the software of survey design and data processing is developed, it fill the gap of VSP area in our country. The technique developed applied successfully in SZXX-A Oilfield、QKYY-B Oilfield、A area and B area. The good results show that this research is valuable, and it is meaningful to the VSP technique development and application of offshore oil industry and other areas in our country.
Resumo:
The two major issues in mining industry are work safety and protection of ground environment when carrying on underground mining activities. Cut-and-fill mining method is increasingly applied in China owing to its advantages of controlling ground pressure and protecting the ground environment effectively. However, some cut-and-fill mines such as Jinchuan nickel mine which has big ore body, broken rock mass and high geostress have unique characteristics on the law of ground pressure and rock mass movement that distinguish from other mining methods. There are still many problems unknown and it is necessary for the further analysis. In this dissertation, vast field survey, geology trenching and relative data analysis are carried out. The distribution of ground fissures and the correlation of the fissures with the location of underground ore body is presented. Using of monitoring data by three-dimension fissure meter and GPS in Jinchuan Deposit Ⅱ, the rule of the surface deformation and the reason of ground fissures generation are analyzed. It is shown that the stress redistribution in surrounding rocks resulting from mining, the existence of the void space underground and the influence of on-going mining activities are three main reasons for the occurrence of ground fissures. Based on actual section planes of No.1 ore body, a large-scale 3D model is established. By this model, the complete process of excavation and filling is simulated and the law of rock mass movement and stability caused by Cut-and-fill Mining is studied. According to simulation results, it is concluded that the deformation of ground surface is still going on developing; the region of subsidence on the ground surface is similar with a circle; the area on the hanging wall side is larger than one on the lower wall side; the contour plots show the centre of subsidence lay on the hanging wall side and the position is near the ore body boundary of 1150m and 1250m where ore body is the thickest. Along strike-line of Jinchuan Deposit Ⅱ, the deformation at the middle of filling body is larger than that in the two sides. Because of the irregular ore body, stress concentrates at the boundary of ore body. With the process of excavation and filling, the high stress release and the stress focus disappear on the hanging wall side. The cut-and-fill mechanism is studied based on monitoring data and numerical simulation. The functions of filling body are discussed. In this dissertation, it is concluded that the stress of filling body is just 2MPa, but the stress of surrounding rock mass is 20MPa. We study the surface movement influenced by the elastic modulus of backfill. The minimal value of the elastic modulus of backfill which can guarantee the safety production of cut-and-fill mine is obtained. Finally, based on the real survey results of the horizontal ore layer and numerical simulation, it is indicated that the horizontal ore layer has destroyed. Key words: cut-and-filling mining, 3D numerical simulation, field monitoring, rock mass movement, cut-and-filling mechanism, the elastic modulus of backfill, the horizontal ore layer
Resumo:
Pyrite is the most stable iron-sulfide in reduced environment, and plays an important role in geochemical iron-sulfur cycling of sediments. Thus, the presence of pyrite in sediments and rocks is an important indicator of sedimentary environments. Previous studies on the thermal products of pyrite showed that all of the products (e.g., pyrrhotite, magnetite, hematite) have strong capability of carrying remanence. To deepen our understanding of the environmental and paleomagnetic significances of pyrite, the mineral transformation processes of pyrite upon heating were systematically investigated in this study using intergrated rock magnetic experiments (in both argon and air atmospheres) and X-ray diffraction analysis. The room temperature susceptibility of the paramagnetic pyrite is about 2.68×10-5 SI. In argon atmosphere (reducing environment), pyrite was transformed into monoclinic stable single domain (SD) pyrrhotite above 440 C. The corresponding coercive force and remanence coercivity are about 20 mT and 30 mT, respectively. In contrast, in air atmosphere (oxidation environment), the intermediate thermal products of pyrite are magnetite and pyrrhotite, which were quickly further oxidated to SD hematite, which has coercivity of about 1400 mT. In addition, the hematite particles gradually grow from SD to PSD grain size region by multiple heating runs. The transformation processes of pyrite in oxidation atomosphere can be interpreted by three possible pathways: (1) pyrite→magnetite→hematite; (2) pyrite→pyrrhotite→magnetite→hematite; and (3) pyrite→pyrrhotite→hematite. Low-temperature magnetic experiments show no transitions for pyrite. Despite that low-temperature magnetic method is not suitable for identification of pyrite, it is clear in this study that the high-temperature thermomagnetic measurements (e.g., -T and J-T curves) are very sensitive to the presence of pyrite in sediments and rocks. Nevertheless, for the thermal treatment products, low-temperature magnetic measurements showed the 34 K transition of pyrrhotite and the 250 K Morine transition of hematite. Iron-sulfide has also been found on Martian meteorolites by other workers. Therefore, systematic study of rock magnetism of pyrite (and other iron-sulfides) and their products will have great significances for both paleomagnetism and planetary magnetism.
Resumo:
Based on the features of soft soil in Tianjing Coastal New Developing Area, this kind of soil with different content of sand was researched systematically, according to the indoor experiment, about its characteristics of strength and deformation. The main results are summarized in the following: Firstly, on the basis of geological engineering investigation, the systemic experiments about the physical characteristics were conducted. The test soil samples were taken from the gray and gray-yellow silty soft soil which was formatted by near-shore marine sediment and marine-continental interactive sediment. The original condition of the sample soil was in saturation and the basic indexes are: liquid limit36.1%, plastic limit 18.8%, plasticity index. Then, the condensation characteristics of the soft soil were analyzed through high-pressure consolidation tests. The results show that,in various loading serials, the coefficient of compressibility under P=100kPa and 200kPa are all larger than 0.5MPa-1. So the sample soil is a kind of high-compressibility soil. Secondly, triaxial strength of undisturbed soil and remoulded soil was researched by using triaxial test. The types of stress-strain curve of both undisturbed and remoulded soil are the stress stabilization and softening type, which show the specific plastic character. Furthermore, the cohesion and friction angle of undisturbed soil changes, when the ambient pressure is different, instead of a stable value for all time; the cohesion and friction angle of remoulded soil changes with the compactness and sand-carrying capacity which is wholly higher than undisturbed soil. At last, the stress-strain results of both undisturbed and remoulded soil were normalized by using the ambient pressure as the normalization factor. The results show that, there are all some normalization characters in both undisturbed and remoulded soil, however, the feature of normalization of undisturbed soil is worse than the remoulded ones. The main reason is that the undisturbed samples are worse in equality and the unavoidable disturb through the process of sampling and experiments will also make them can not put up good normalization. Therefore, it is feasible to normalize the soil in Tianjing Coastal New Developing Area with the ambient pressure as normalization factor.
Resumo:
Integrating geology, core, well-logging, experimental data, and production data, with the guide of sequence stratigraphy, sedimentology, reservoir exploitation geology and other disciplines’ theories, combinating the sequence stratigraphy and Maill’s reservoir architectures concepts and theories, the research and analysis methods of non-marine fan-delta reservoir architectures are systemly set out. And the correspondence of reservoir structures, sedimentology and reservoir geology is established. An integral and systematical research approach and theory and conception of reservoir architecture is developed, which enriched the reservoir research theory. Considering the requirement to the reservoir research in different development phase, the six classification systems of reservoir architectures are brought up. According to different reservoir’s connection and location of Ek different levels of reservoir architecture, 3 types, 20 kind architectures styles are summarized. The research about undisturbed reservoir characterization is launched, through analyzing reservoir characterization to pour water to the different reservoirs of Kongnan region, the changing regular pattern of reservoir quality during pouring water process is summarized. Combined with the actual zone data, inner-well reservoir geometry relationship of injection-production model is designed, and the models of development process are dynamic simulated. In view of seven laboratory samples of 3 types, six order architecture unit of braided stream, fan-delta and nearshore subsea apron in Kongnan region, the remaining oil distribution model is determined. Using the geo-statistics methods dissect the key regions, the tectono-stratigraphical model and the reservoir parameters model are established. The distribution of the characteristics of the underground reservoir is quantitatively described. Based on the reservoir research, carrying out the development of different characteristics of reservoir, the development pattern and countermeasures are determined. The relationships between reservoir structure levels and reservoir development stages are summed up, the relationships between architecture unit of different levels and exploration develop stages are determined.
Resumo:
Based on a viewpoint of an intricate system demanding high, this thesis advances a new concept that urban sustainable development stratagem is a high harmony and amalgamation among urban economy, geo-environment and tech-capital, and the optimum field of which lies in their mutual matching part, which quantitatively demarcates the optimum value field of urban sustainable development and establishes the academic foundation to describe and analyze sustainable development stratagem. And establishes a series of cause-effect model, a analysissitus model, flux model as well as its recognizing mode for urban system are established by the approach of System Dynamics, which can distinguish urban states by its polarity of entropy flows. At the same time, the matter flow, energy flow and information flow which exist in the course of urban development are analyzed based on the input/output (I/O) relationships of urban economy. And a new type of I/O relationships, namely new resources-environment account, are established, in which both resource and environment factors are considered. All above that settles a theoretic foundation for resource economy and environment economy as well as quantitative relationships of inter-function between urban development and geoenvironment, and gives a new approach to analyze natinal economy and urban sustainable development. Based on an analysis of the connection between resource-environmental construct of geoenvironment and urban economy development, the Geoenvironmental Carrying Capability (GeCC) is analyzed. Further more, a series of definitions and formula about the Gross Carrying Capability (GCC), Structure Carrying Capability (SCC) and Impulse Carrying Capability (ICC) is achieved, which can be applied to evaluate both the quality and capacity of geoenvironment and thereunder to determine the scale and velocity for urban development. A demonstrative study of the above is applied to Beihai city (Guangxi province, PRC), and the numerical value laws between the urban development and its geoenvironment is studied by the I/O relationship in the urban economy as following: · the relationships between the urban economic development and land use as well as consumption of underground water, metal mineral, mineral energy source, metalloid mineral and other geologic resources. · the relationships between urban economy and waste output such as industrial "3 waste", dust, rubbish and living polluted water as well as the restricting impact of both resource-environmental factors and tech-capital on the urban grow. · Optimization and control analysis on the reciprocity between urban economy and its geoenvironment are discussed, and sensitive factors and its order of the urban geoenvironmental resources, wastes and economic sections are fixed, which can be applied to determine the urban industrial structure, scale, grow rate matching with its geoenvironment and tech-capital. · a sustainable development stratagem for the city is suggested.
Resumo:
The main reservoir type in the south of Dagang Oilfield is alluvial reservoir. In this paper, the reservoir structure model and the distribution of connected body and flow barrier were built on base of the study of high-resolution sequential stratigraphic skeleton and fine sedimentary microfacies on level of single sandbody. Utilizing the static and dynamic data synthetically and carrying out the comparision of the classification method for reservoir flow unit in different reservoir, the criterion, which can be used to classify the flow unit in first section of Kongdian formation of Kongnan area, was defined. The qualitative method of well-to-well correlation and the quantitative method of conditional simulation using multiple data are adopted to disclose the oil and water moving regulation in different flow unit and the distribution rule of remaining oil by physical simulation measure. A set of flow unit study method was formed that is suit for the Dagang Oilfield on account of the remaining oil production according to the flow unit. Several outstanding progresses was obtained in the following aspects:It is considered that the reservoir structure of Zao V iow oil group- Zao Vup4 layerand are jigsaw-puzzled reservoir, while ZaoVup3-ZaoVupi layers are labyrinth reservoir,which are studied on base of high-resolution sequential stratigraphic skeleton on the levelof single sandbody in first section of Kongdian formation of Kongnan area and accordingto the study of fine sedimentary microfacies and fault sealeing.When classifying the flow unit, only permeability is the basic parameter using thestatic and dynamic data and, and also different parameters should be chose or deleted, suchas porosity, effective thickness, fluid viscosity and so on, because of the weak or stronginterlayer heterogeneous and the difference of interlayer crude oil character.The method of building predicting-model of flow unit was proposed. This methodis according to the theories of reservoir sedimentology and high-resolution sequencestratigraphic and adopts the quantitative method of well-to well correlation and the quantitative method of stochastic simulation using integrateddense well data. Finally the 3-D predicting-model of flow unit and the interlay er distribution model in flow unit were built which are for alluvial fan and fan delta fades in first section of Kongdian formation of Kongnan area, and nine genetic model of flow unit of alluvial environment that spread in the space were proposed.(4) Difference of reservoir microscopic pore configuration in various flow units and difference of flow capability and oil displacement effect were demonstrated through the physical experiments such as nuclear magnetic resonance (NMR), constant rate mercury penetration, flow simulation and so on. The distribution of remaining oil in this area was predicted combining the dynamic data and numerical modeling based on the flow unit. Remaining oil production measure was brought up by the clue of flow unit during the medium and late course of the oilfield development.
Resumo:
A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party quantum entanglement to distant users in a quantum communication system and determining the ability of quantum optical channels to reliably transmit information. A recent proposal for a quantum communication architecture that realizes long-distance, high-fidelity qubit teleportation is reviewed. Previous work on this communication architecture is extended in two primary ways. First, models are developed for assessing the effects of amplitude, phase, and frequency errors in the entanglement source of polarization-entangled photons, as well as fiber loss and imperfect polarization restoration, on the throughput and fidelity of the system. Second, an error model is derived for an extension of this communication architecture that allows for the production and storage of three-party entangled Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication architecture in qubit teleportation and quantum secret sharing communication protocols is presented. Recent work on determining the channel capacity of optical channels is extended in several ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing the quantum version of classical colored Gaussian-noise channels. The proof is strongly mo- tivated by the standard technique of whitening Gaussian noise used in classical information theory. Minimum output entropy problems related to these channel capacity derivations are also studied. These single-user Bosonic capacity results are extended to a multi-user scenario by deriving capacity regions for single-mode and wideband coherent-state multiple access channels. An even larger capacity region is obtained when the transmitters use non- classical Gaussian states, and an outer bound on the ultimate capacity region is presented
Resumo:
C.J.Price, D.R.Pugh, N.A.Snooke, J.E.Hunt, M.S.Wilson, Combining Functional and Structural Reasoning for Safety Analysis of Electrical Designs, Knowledge Engineering Review, vol 12:3, pp.271-287, 1997.