990 resultados para carbon offsets
Resumo:
Hybrid nanocomposites of polycaprolactone (PCL) with multiwall carbon nanotubes (MWNTs) and silver nanoparticles (nAg) were prepared by melt mixing. Synergetic effect of the two nanofillers (MWNT and nAg) in PCL matrix was evaluated for dielectric and antibacterial properties. Dielectric results showed that the addition of nAg as filler in PCL matrix (PCL/nAg) had no effect on conductivity, whereas addition of MWNT in PCL matrix (PCL/MWNT) caused a sharp increase in conductivity of PCL. Interestingly, the hybrid nanocomposite (PCL/MWNT/nAg) incorporating MWNT and nAg also exhibited high electrical conductivity. The hybrid composite was found to have antibacterial property similar to that of PCL/nAg composite for lower loading of nAg. This study demonstrates that the synergetic interaction of the nanofillers in the hybrid nanocomposite improves both electrical conductivity and antibacterial properties of PCL.
Resumo:
12 V / kilo-Farad (kF) range substrate-integrated lead-carbon hybrid ultracapacitors (HUCs) wherein the conventional positive plates of lead-acid batteries are replaced with substrate-integrated PbO2 positive plates and the negative plates are replaced with carbon-coated graphitic electrodes, providing totally non-faradaic and corrosion-free electrodes, are developed and performance tested. Constant-current discharge data at varying load-currents, constant-power discharge data at varying power values, and the capacitance data at different temperature for a 12 V / kF range substrate-integrated lead-carbon HUC are described along with its resistance, leakage current, self-discharge and cycle-life characteristics.
Resumo:
Volatile organic compounds (VOCs) are present in our every day used products such as plastics, cosmetics, air fresheners, paint, etc. The determination of amount of VOC present in atmosphere can be carried out via various sensors. In this work a nanocomposite of a novel thiophene based conducting polymer and carbon black is used as a volatile organic compound sensor. The fabricated 2 lead chemiresistor sensor was tested for vapours of toluene, acetone, cylcohexane, and carbon tetrachloride. The sensor responds to all the vapours, however, exhibit maximum response to toluene vapours. The sensor was evaluated for various concentrations of toluene. The lower limit of detection of the sensor is 15 +/- 10 ppm. The study of the effect of humidity on senor response to toluene showed that the response decreases at higher humidity conditions. The surface morphology of the nanocomposite was characterized by scanning electron microscopy. Diffuse reflectance spectroscopy was used to investigate the absorption of vapours by the nanocomposite film. Contact angle measurements were used to present the effect of water vapour on the toluene response of nanocomposite film. Solubility parameter of the conducting polymer is predicted by molecular dynamics. The sensing behaviour of the conducting polymer is correlated with solubility parameter of the polymer. Dispersion interaction of conducting polymer with toluene is believed to be the reason for the selective response towards toluene. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The way nanostructures behave and mechanically respond to high impact collision is a topic of intrigue. For anisotropic nanostructures, such as carbon nanotubes, this response will be complicated based on the impact geometry. Here we report the result of hypervelocity impact of nanotubes against solid targets and show that impact produces a large number of defects in the nanotubes, as well as rapid atom evaporation, leading to their unzipping along the nanotube axis. Fully atomistic reactive molecular dynamics simulations are used to gain further insights of the pathways and deformation and fracture mechanisms of nanotubes under high energy mechanical impact. Carbon nanotubes have been unzipped into graphene nanoribbons before using chemical treatments but here the instability of nanotubes against formation, fracture, and unzipping is revealed purely through mechanical impact. defect
Resumo:
Compressive loading of the carbon nanotube (CNT) has attracted much attention due to its entangled cellular like structure (CNT foam). This report investigates the mechanical behavior of magnetorheological fluid impregnated micro porous CNT foam that has not been realized before at this scale. Compressive behavior of CNT foam is found to greatly depend on the variation in both fluid viscosity as well as magnetic field intensity. Moreover, maximum achieved stress and energy absorption in CNT foam followed a power law behavior with the magnetic field intensity. Magnetic field induced movement of both CNT and iron oxide particles along the field direction is shown to dominate compressive behavior of CNT foam over highly attractive van der Waals forces between individual CNT. Therefore, this study demonstrates a method for tailoring the mechanical behavior of the fluid impregnated CNT foam. (C) 2014 AIP Publishing LLC.
Resumo:
We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H2SO4. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability. (C) 2014 Elsevier B.V. All rights reserved.
Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors
Resumo:
Carbonization of milk-free coconut kernel pulp is carried out at low temperatures. The carbon samples are activated using KOH, and electrical double-layer capacitor (EDLC) properties are studied. Among the several samples prepared, activated carbon prepared at 600 A degrees C has a large surface area (1,200 m(2) g(-1)). There is a decrease in surface area with increasing temperature of preparation. Cyclic voltammetry and galvanostatic charge-discharge studies suggest that activated carbons derived from coconut kernel pulp are appropriate materials for EDLC studies in acidic, alkaline, and non-aqueous electrolytes. Specific capacitance of 173 F g(-1) is obtained in 1 M H2SO4 electrolyte for the activated carbon prepared at 600 A degrees C. The supercapacitor properties of activated carbon sample prepared at 600 A degrees C are superior to the samples prepared at higher temperatures.
Resumo:
Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.
Resumo:
A new general route for the synthesis of novel beta-aryl-beta-(methylthio)acroleins, a class of stable potential 1,3-dielectrophilic synthons, has been reported. The overall protocol involves treatment of either beta-chloroacroleins or their precursor iminium salts (generated in situ from the corresponding active methylene ketones under Vilsmeier-Haack reaction conditions) with S,S-dimethyldithiocarbonates (DDC)/aqueous KOH in either a one-pot or two-step process. The dimethyldithiocarbonate (DDC)/30% aqueous KOH has been shown to be an excellent source of methylthiolate anion. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The chemical sensing behaviour of the carbon nano-tube and graphene-based sensors for detecting various chemical analytes is presented in this article. A focus on detection mechanisms has been provided to assess their relative potential under different environmental conditions. The performance of these two carbon allotropes is compared based on their sensitivity towards various types of electron donating and accepting molecules. Although these carbon materials still have to meet crucial challenges in fabrication and optimization, continued progress in this field may lead to a sensor with superior sensitivity for a wide range of applications.
Resumo:
A new NMR experiment that exploits the advantages of proton double quantum (DQ) NMR through a proton DQ-carbon single quantum (SQ) correlation experiment in the solid state is proposed. Analogous to the previously proposed 2D H-1 (DQ)-C-13 refocused INEPT experiment (Webber et al., 2010), the correlation between H-1 and C-13 is achieved through scalar coupling evolution, while the double quantum coherence among protons is generated through dipolar couplings. However, the new experiment relies on C-13 transverse coherence for scalar transfer. The new experiment dubbed MAS-J-H-1 (DQ)-C-13-HMQC, is particularly suited for unlabeled molecules and can provide higher sensitivity than its INEPT counterpart. The experiment is applied to four different samples. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The demixing of polystyrene (PS) and poly(vinyl methylether) (PVME) was systematically investigated in the presence of surface functionalized multiwall carbon nanotubes (MWNTs) by melt rheology. As PS-PVME blends are weakly interacting blends, the contribution of conformational entropy increases, resulting in thermo-rheological complexity wherein the concentration fluctuation persists even beyond the critical demixing temperature. These phenomenal changes were followed here in the presence of MWNTs with different surface functional groups. Polystyrene was synthesised by atom transfer radical polymerization and was immobilized onto carboxyl acid functionalized multiwall carbon nanotubes (COOH-MWNTs) via nitrene chemistry in order to improve the phase miscibility in PS-PVME blends. Interestingly, blends with 0.25 wt% polystyrene grafted multiwall carbon nanotubes (PS-g-MWNTs) delayed the spinodal decomposition temperature in the blends by similar to 33 degrees C with respect to both control blends and those with COOH-MWNTs. While the localization of COOH-MWNTs in PVME was explained from a thermodynamic point of view, the localization of PS-g-MWNTs was understood to result from favorable PS-PVME contact and the degree of surface coverage of PS on the surface of MWNTs. The length of the cooperative rearranging region (xi) decreased in presence of PS-g-MWNTs, suggesting confinement effects on large scale motions and enhanced interchain concentration fluctuation.
Resumo:
A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (AI) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (E-to similar to 0.1 V/mu m) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.
Resumo:
Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.
Resumo:
The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the `neighboring' (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans. (C) 2014 Elsevier Ltd. All rights reserved.